A note on orthodox additive inverse semirings

M. K. Sen; S. K. Maity

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2004)

  • Volume: 43, Issue: 1, page 149-154
  • ISSN: 0231-9721

Abstract

top
We show in an additive inverse regular semiring ( S , + , · ) with E ( S ) as the set of all multiplicative idempotents and E + ( S ) as the set of all additive idempotents, the following conditions are equivalent: (i) For all e , f E ( S ) , e f E + ( S ) implies f e E + ( S ) . (ii) ( S , · ) is orthodox. (iii) ( S , · ) is a semilattice of groups. This result generalizes the corresponding result of regular ring.

How to cite

top

Sen, M. K., and Maity, S. K.. "A note on orthodox additive inverse semirings." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 43.1 (2004): 149-154. <http://eudml.org/doc/32346>.

@article{Sen2004,
abstract = {We show in an additive inverse regular semiring $(S, +, \cdot )$ with $E^\{\bullet \}(S)$ as the set of all multiplicative idempotents and $E^+(S)$ as the set of all additive idempotents, the following conditions are equivalent: (i) For all $e, f \in E^\{\bullet \}(S)$, $ef \in E^+(S)$ implies $fe\in E^+(S)$. (ii) $(S, \cdot )$ is orthodox. (iii) $(S, \cdot )$ is a semilattice of groups. This result generalizes the corresponding result of regular ring.},
author = {Sen, M. K., Maity, S. K.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {additive inverse semirings; regular semirings; orthodox semirings; additive inverse semirings; regular semirings; orthodox semirings; idempotents},
language = {eng},
number = {1},
pages = {149-154},
publisher = {Palacký University Olomouc},
title = {A note on orthodox additive inverse semirings},
url = {http://eudml.org/doc/32346},
volume = {43},
year = {2004},
}

TY - JOUR
AU - Sen, M. K.
AU - Maity, S. K.
TI - A note on orthodox additive inverse semirings
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2004
PB - Palacký University Olomouc
VL - 43
IS - 1
SP - 149
EP - 154
AB - We show in an additive inverse regular semiring $(S, +, \cdot )$ with $E^{\bullet }(S)$ as the set of all multiplicative idempotents and $E^+(S)$ as the set of all additive idempotents, the following conditions are equivalent: (i) For all $e, f \in E^{\bullet }(S)$, $ef \in E^+(S)$ implies $fe\in E^+(S)$. (ii) $(S, \cdot )$ is orthodox. (iii) $(S, \cdot )$ is a semilattice of groups. This result generalizes the corresponding result of regular ring.
LA - eng
KW - additive inverse semirings; regular semirings; orthodox semirings; additive inverse semirings; regular semirings; orthodox semirings; idempotents
UR - http://eudml.org/doc/32346
ER -

References

top
  1. Chaptal N., Anneaux dont le demi groupe multiplicatif est inverse, C. R. Acad. Sci. Paris, Ser. A-B, 262 (1966), 247–277. (1966) Zbl0133.29001MR0190177
  2. Golan J. S.: The Theory of Semirings with Applications in Mathematics, Theoretical Computer Science., Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman Scientific, , 1992. (1992) MR1163371
  3. Howie J. M., Introduction to the theory of semigroups., Academic Press, , 1976. (1976) 
  4. Karvellas P. H., Inverse semirings, J. Austral. Math. Soc. 18 (1974), 277–288. (1974) MR0366991
  5. Zeleznekow J., Regular semirings, Semigroup Forum 23 (1981), 119–136. (1981) MR0641993

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.