On special almost geodesic mappings of type of spaces with affine connection
Vladimir Berezovskij; Josef Mikeš
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2004)
- Volume: 43, Issue: 1, page 21-26
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topBerezovskij, Vladimir, and Mikeš, Josef. "On special almost geodesic mappings of type $\pi _1$ of spaces with affine connection." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 43.1 (2004): 21-26. <http://eudml.org/doc/32360>.
@article{Berezovskij2004,
abstract = {N. S. Sinyukov [5] introduced the concept of an almost geodesic mapping of a space $A_n$ with an affine connection without torsion onto $\overline\{A\}_n$
and found three types: $\pi _1$, $\pi _2$ and $\pi _3$. The authors of
[1] proved completness of that classification for $n>5$.By definition, special types of mappings $\pi _1$ are characterized by equations \[ P\_\{ij,k\}^h+P\_\{ij\}^\alpha P\_\{\alpha k\}^h =a\_\{ij\} \delta \_\{k\}^h , \]
where $P_\{ij\}^h\equiv \overline\{\Gamma \}_\{ij\}^h-\Gamma _\{ij\}^h$ is the
deformation tensor of affine connections of the spaces $A_n$ and $\overline\{A\}_n$.In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces are described.},
author = {Berezovskij, Vladimir, Mikeš, Josef},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {almost geodesic mappings; affine connection space; almost geodesic mappings; affine connection space},
language = {eng},
number = {1},
pages = {21-26},
publisher = {Palacký University Olomouc},
title = {On special almost geodesic mappings of type $\pi _1$ of spaces with affine connection},
url = {http://eudml.org/doc/32360},
volume = {43},
year = {2004},
}
TY - JOUR
AU - Berezovskij, Vladimir
AU - Mikeš, Josef
TI - On special almost geodesic mappings of type $\pi _1$ of spaces with affine connection
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2004
PB - Palacký University Olomouc
VL - 43
IS - 1
SP - 21
EP - 26
AB - N. S. Sinyukov [5] introduced the concept of an almost geodesic mapping of a space $A_n$ with an affine connection without torsion onto $\overline{A}_n$
and found three types: $\pi _1$, $\pi _2$ and $\pi _3$. The authors of
[1] proved completness of that classification for $n>5$.By definition, special types of mappings $\pi _1$ are characterized by equations \[ P_{ij,k}^h+P_{ij}^\alpha P_{\alpha k}^h =a_{ij} \delta _{k}^h , \]
where $P_{ij}^h\equiv \overline{\Gamma }_{ij}^h-\Gamma _{ij}^h$ is the
deformation tensor of affine connections of the spaces $A_n$ and $\overline{A}_n$.In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces are described.
LA - eng
KW - almost geodesic mappings; affine connection space; almost geodesic mappings; affine connection space
UR - http://eudml.org/doc/32360
ER -
References
top- Berezovsky V. E., Mikeš J., On the classification of almost geodesic mappings of affine-connected spaces, In: Proc. Conf., Dubrovnik (Yugoslavia) 1988, 41–48 (1989). (1988) MR1040054
- Berezovsky V. E., Mikeš J., On almost geodesic mappings of the type of Riemannian spaces preserving a system -orthogonal hypersurfaces, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 59, 103–108 (1999). (1999) MR1692261
- Chernyshenko V. M., Räume mit einem speziellen Komplex von geodätischen Linien, Tr. Semin. Vektor. Tenzor. Anal. 11 (1961), 253–268 (in Russian). (1961) Zbl0156.41804
- Mikeš J., Holomorphically projective mappings and their generalizations, J. Math. Sci., New York 89, 3 (1998), 1334–1353. (1998) Zbl0983.53013MR1619720
- Sinyukov N. S.: On geodesic mappings of Riemannian spaces., Nauka, Moscow, , 1979 (in Russian). (1979) MR0552022
- Sinyukov N. S., Almost geodesic mappings of affine connected and Riemannian spaces, Itogi Nauki Tekh., Ser. Probl. Geom. 13 (1982), 3–26 (in Russian); J. Sov. Math. 25 (1984), 1235–1249. (1982) Zbl0498.53010MR0674123
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.