On isometries in partially ordered groups

Milan Jasem

Mathematica Slovaca (1993)

  • Volume: 43, Issue: 1, page 21-29
  • ISSN: 0232-0525

How to cite

top

Jasem, Milan. "On isometries in partially ordered groups." Mathematica Slovaca 43.1 (1993): 21-29. <http://eudml.org/doc/32420>.

@article{Jasem1993,
author = {Jasem, Milan},
journal = {Mathematica Slovaca},
keywords = {isometry; lattice-ordered group; congruence; strongly projectable; Riesz groups; distributive multilattice groups},
language = {eng},
number = {1},
pages = {21-29},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On isometries in partially ordered groups},
url = {http://eudml.org/doc/32420},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Jasem, Milan
TI - On isometries in partially ordered groups
JO - Mathematica Slovaca
PY - 1993
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 43
IS - 1
SP - 21
EP - 29
LA - eng
KW - isometry; lattice-ordered group; congruence; strongly projectable; Riesz groups; distributive multilattice groups
UR - http://eudml.org/doc/32420
ER -

References

top
  1. BENADO M., Sur la théorie de la divisibilité, Acad. R. P. Romine. Bul. Sti. Sect. Mat. Fyz. 6 (1954), 263-270. (1954) Zbl0057.25301MR0067089
  2. FUCHS L., Riesz groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1965), 1-34. (1965) Zbl0125.28703MR0180609
  3. FUCHS L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. (1963) Zbl0137.02001MR0171864
  4. GLASS A. M. W., Polars and their applications in directed interpolation groups, Trans. Amer. Math. Soc. 166 (1972), 1-25. (1972) Zbl0235.06004MR0295991
  5. GOODEARL K. R., Partially Ordered Abelian Groups with Interpolation, Amer. Math. Soc., Providence, 1986. (1986) Zbl0589.06008MR0845783
  6. HOLLAND, CH., Intrinsic metrics for lattice ordered groups, Algebra Universalis 19 (1984), 142-150. (1984) Zbl0557.06011MR0758313
  7. JAKUBÍK J., Isometries of lattice ordered groups, Czechoslovak Math. J. 30 (1980), 142-152. (1980) Zbl0436.06013MR0565917
  8. JAKUBÍK J., On isometries of non-abelian lattice ordered groups, Math. Slovaca 31 (1981), 171-175. (1981) Zbl0457.06014MR0611629
  9. JAKUBÍK J., Weak isometries of lattice ordered groups, Math. Slovaca 38 (1988), 133-138. (1988) Zbl0642.06009MR0945366
  10. JAKUBÍK J., KOLIBIAR M., Isometries of multilattice groups, Czechoslovak Math. J. 33 (1983), 602-612. (1983) Zbl0538.06018MR0721089
  11. JASEM M., Isometries in Riesz groups, Czechoslovak Math. J. 36 (1986), 35-43. (1986) Zbl0603.06007MR0822864
  12. JASEM M., Isometries in non-abelian multilattice groups, Czechoslovak Math. J., (Submitted). Zbl0890.06012
  13. JASEM M., Weak isometries and isometries in partially ordered groups, Algebra Universalis, (Submitted). 
  14. JASEM M., On weak isometries in multilattice groups, Math. Slovaca 40 (1990), 337-340. (1990) Zbl0753.06015MR1120964
  15. McALISTER D. B., On multilattice groups, Proc. Cambridge Philos. Soc. 61 (1965), 621-638. (1965) Zbl0135.06203MR0175819
  16. POWELL W. B., On isometries in abelian lattice ordered groups, J. Indian Math. Soc. (N.S.) 46 (1982), 189-194. (1982) MR0878072
  17. RACHŮNEK J., Isometries in ordered groups, Czechoslovak Math. J. 34 (1984), 334-341. (1984) Zbl0558.06020MR0743498
  18. SWAMY K. L. N., Isometries in autometrized lattice ordered groups, Algebra Universalis 8 (1978), 59-64. (1978) Zbl0409.06007MR0463074
  19. SWAMY K. L. N., Isometries in autometrized lattice ordered groups II, Seminar Notes Kobe Univ. 5 (1977), 211-214. (1977) Zbl0457.06015MR0463075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.