Periodic BVP with -Laplacian and impulses
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)
- Volume: 44, Issue: 1, page 131-150
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topPolášek, Vladimír. "Periodic BVP with $\phi $-Laplacian and impulses." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 131-150. <http://eudml.org/doc/32445>.
@article{Polášek2005,
abstract = {The paper deals with the impulsive boundary value problem \[ \frac\{d\}\{dt\}[\phi (y^\{\prime \}(t))] = f(t, y(t), y^\{\prime \}(t)), \quad y(0) = y(T),\quad y^\{\prime \}(0) = y^\{\prime \}(T), y(t\_\{i\}+) = J\_\{i\}(y(t\_\{i\})), \quad y^\{\prime \}(t\_\{i\}+) = M\_\{i\}(y^\{\prime \}(t\_\{i\})),\quad i = 1, \ldots m. \]
The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions.},
author = {Polášek, Vladimír},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$\phi $-Laplacian; impulses; lower and upper functions; periodic boundary value problem; -Laplacian; impulses; lower and upper functions; periodic boundary value problem},
language = {eng},
number = {1},
pages = {131-150},
publisher = {Palacký University Olomouc},
title = {Periodic BVP with $\phi $-Laplacian and impulses},
url = {http://eudml.org/doc/32445},
volume = {44},
year = {2005},
}
TY - JOUR
AU - Polášek, Vladimír
TI - Periodic BVP with $\phi $-Laplacian and impulses
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 131
EP - 150
AB - The paper deals with the impulsive boundary value problem \[ \frac{d}{dt}[\phi (y^{\prime }(t))] = f(t, y(t), y^{\prime }(t)), \quad y(0) = y(T),\quad y^{\prime }(0) = y^{\prime }(T), y(t_{i}+) = J_{i}(y(t_{i})), \quad y^{\prime }(t_{i}+) = M_{i}(y^{\prime }(t_{i})),\quad i = 1, \ldots m. \]
The method of lower and upper solutions is directly applied to obtain the results for this problems whose right-hand sides either fulfil conditions of the sign type or satisfy one-sided growth conditions.
LA - eng
KW - $\phi $-Laplacian; impulses; lower and upper functions; periodic boundary value problem; -Laplacian; impulses; lower and upper functions; periodic boundary value problem
UR - http://eudml.org/doc/32445
ER -
References
top- Cabada A., Pouso L. R., Existence results for the problem with nonlinear boundary conditions, Nonlinear Analysis 35 (1999), 221–231. (1999) MR1643240
- Cabada A., Pouso L. R., Existence result for the problem with periodic and Neumann boundary conditions, Nonlinear Anal. T.M.A 30 (1997), 1733–1742. (1997) MR1490088
- O’Regan D., Some general principles and results for , , SIAM J. Math. Anal. 24 (1993), 648–668. (1993) MR1215430
- Manásevich R., Mawhin J., Periodic solutions for nonlinear systems with p-Laplacian like operators, J. Differential Equations 145 (1998), 367–393. (1998) MR1621038
- Bainov D., Simeonov P.: Impulsive differential equations: periodic solutions, applications., Pitman Monographs and Surveys in Pure and Applied Mathematics 66, Longman Scientific and Technical, Essex, England, , 1993. (1993) MR1266625
- Cabada A., Nieto J. J., Franco D., Trofimchuk S. I., A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points, Dyn. Contin. Discrete Impulsive Syst. 7 (2000), 145–158. Zbl0953.34020MR1744974
- Yujun Dong, Periodic solutions for second order impulsive differential systems, Nonlinear Anal. T.M.A 27 (1996), 811–820. (1996) MR1402168
- Erbe L. H., Xinzhi Liu, Existence results for boundary value problems of second order impulsive differential equations, J. Math. Anal. Appl. 149 (1990), 56–59. (1990) MR1054793
- Shouchuan Hu, Laksmikantham V., Periodic boundary value problems for second order impulsive differential equations, Nonlinear Anal. T.M.A 13 (1989), 75–85. (1989) MR0973370
- Liz E., Nieto J. J., Periodic solutions of discontinuous impulsive differential systems, J. Math. Anal. Appl. 161 (1991), 388–394. (1991) Zbl0753.34027MR1132115
- Liz E., Nieto J. J., The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations, Comment. Math. Univ. Carolinae 34 (1993), 405–411. (1993) Zbl0780.34006MR1243071
- Rachůnková I., Tomeček J., Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions, J. Math. Anal. Appl. 292 (2004), 525–539. Zbl1058.34031MR2047629
- Rachůnková I., Tvrdý M., Impulsive Periodic Boudary Value Problem and Topological Degree, Funct. Differ. Equ. 9 (2002), 471–498. MR1971622
- Zhitao Zhang, Existence of solutions for second order impulsive differential equations, Appl. Math., Ser. B (eng. Ed.) 12 (1997), 307–320. (1997) MR1482919
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.