On structure space of Γ -semigroups

S. Chattopadhyay; S. Kar

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2008)

  • Volume: 47, Issue: 1, page 37-46
  • ISSN: 0231-9721

Abstract

top
In this paper we introduce the notion of the structure space of Γ -semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.

How to cite

top

Chattopadhyay, S., and Kar, S.. "On structure space of $\Gamma $-semigroups." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 47.1 (2008): 37-46. <http://eudml.org/doc/32470>.

@article{Chattopadhyay2008,
abstract = {In this paper we introduce the notion of the structure space of $\Gamma $-semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.},
author = {Chattopadhyay, S., Kar, S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$\Gamma $-semigroup; uniformly strongly prime ideal; Noetherian $\Gamma $-semigroup; hull-kernel topology; structure space; uniformly strongly prime ideals; Noetherian -semigroups; hull-kernel topology; structure spaces},
language = {eng},
number = {1},
pages = {37-46},
publisher = {Palacký University Olomouc},
title = {On structure space of $\Gamma $-semigroups},
url = {http://eudml.org/doc/32470},
volume = {47},
year = {2008},
}

TY - JOUR
AU - Chattopadhyay, S.
AU - Kar, S.
TI - On structure space of $\Gamma $-semigroups
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2008
PB - Palacký University Olomouc
VL - 47
IS - 1
SP - 37
EP - 46
AB - In this paper we introduce the notion of the structure space of $\Gamma $-semigroups formed by the class of uniformly strongly prime ideals. We also study separation axioms and compactness property in this structure space.
LA - eng
KW - $\Gamma $-semigroup; uniformly strongly prime ideal; Noetherian $\Gamma $-semigroup; hull-kernel topology; structure space; uniformly strongly prime ideals; Noetherian -semigroups; hull-kernel topology; structure spaces
UR - http://eudml.org/doc/32470
ER -

References

top
  1. Adhikari M. R., Das M. K., Structure Spaces of Semirings, Bull. Cal. Math. Soc. 86 (1994), 313–317. (1994) Zbl0821.16046MR1326227
  2. Dutta T. K., Chattopadhyay S., On uniformly strongly prime Γ -semigroup, Analele Stiintifice Ale Universitatii “AL. I. CUZA” IASI Tomul LII, s.I, Math., 2006, f.2, 325–335. Zbl1132.20041MR2341098
  3. Dutta T. K., Chattopadhyay S., On Uniformly strongly prime Γ -semigroup (2), Accepted. 
  4. Gillman L., Rings with Hausdorff structure space, Fund. Math. 45 (1957), 1–16. (1957) MR0092773
  5. Chattopadhyay S., Right Orthodox Γ -semigroup, Southeast Asian Bull. of Mathematics 29 (2005), 23–30. Zbl1066.20066MR2125891
  6. Chattopadhyay S., Right inverse Γ -semigroup, Bull. Cal. Math. Soc 93, 6 (2001), 435–442. Zbl1002.20042MR1908897
  7. Kohls C. W., The space of prime ideals of a ring, Fund. Math. 45 (1957), 17–27. (1957) Zbl0079.26302MR0100610
  8. Saha N. K., On Γ -semigroup III, Bull. Cal. Math. Soc. 80 (1988), 1–12. (1988) Zbl0652.20061MR0956997
  9. Sen M. K., Saha N. K., On Γ -semigroup I, Bull. Cal. Math. Soc. 78 (1986), 180–186. (1986) Zbl0601.20063MR0851844
  10. Sen M. K., Chattopadhyay S., Semidirect Product of a Monoid and a Γ -semigroup, East-West J. of Math. 6, 2 (2004), 131–138. Zbl1098.20052MR2225411

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.