On -reflexive Banach spaces
Iryna Banakh; Taras O. Banakh; Elena Riss
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 1, page 61-74
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanakh, Iryna, Banakh, Taras O., and Riss, Elena. "On $r$-reflexive Banach spaces." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 61-74. <http://eudml.org/doc/32480>.
@article{Banakh2009,
abstract = {A Banach space $X$ is called $r$-reflexive if for any cover $\mathcal \{U\}$ of $X$ by weakly open sets there is a finite subfamily $\mathcal \{V\}\subset \mathcal \{U\}$ covering some ball of radius 1 centered at a point $x$ with $\Vert x\Vert \le r$. We prove that an infinite-dimensional separable Banach space $X$ is $\infty $-reflexive ($r$-reflexive for some $r\in \mathbb \{N\}$) if and only if each $\varepsilon $-net for $X$ has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of $X$. We show that the quasireflexive James space $J$ is $r$-reflexive for no $r\in \mathbb \{N\}$. We do not know if each $\infty $-reflexive Banach space is reflexive, but we prove that each separable $\infty $-reflexive Banach space $X$ has Asplund dual. As a by-product of the proof we obtain a covering characterization of the Asplund property of Banach spaces.},
author = {Banakh, Iryna, Banakh, Taras O., Riss, Elena},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {reflexive Banach space; $r$-reflexive Banach space; Asplund Banach space; reflexive Banach space; -reflexive Banach space; net; weak accumulation point; weakly convergent sequence; James' space},
language = {eng},
number = {1},
pages = {61-74},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $r$-reflexive Banach spaces},
url = {http://eudml.org/doc/32480},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Banakh, Iryna
AU - Banakh, Taras O.
AU - Riss, Elena
TI - On $r$-reflexive Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 61
EP - 74
AB - A Banach space $X$ is called $r$-reflexive if for any cover $\mathcal {U}$ of $X$ by weakly open sets there is a finite subfamily $\mathcal {V}\subset \mathcal {U}$ covering some ball of radius 1 centered at a point $x$ with $\Vert x\Vert \le r$. We prove that an infinite-dimensional separable Banach space $X$ is $\infty $-reflexive ($r$-reflexive for some $r\in \mathbb {N}$) if and only if each $\varepsilon $-net for $X$ has an accumulation point (resp., contains a non-trivial convergent sequence) in the weak topology of $X$. We show that the quasireflexive James space $J$ is $r$-reflexive for no $r\in \mathbb {N}$. We do not know if each $\infty $-reflexive Banach space is reflexive, but we prove that each separable $\infty $-reflexive Banach space $X$ has Asplund dual. As a by-product of the proof we obtain a covering characterization of the Asplund property of Banach spaces.
LA - eng
KW - reflexive Banach space; $r$-reflexive Banach space; Asplund Banach space; reflexive Banach space; -reflexive Banach space; net; weak accumulation point; weakly convergent sequence; James' space
UR - http://eudml.org/doc/32480
ER -
References
top- Banakh I., On Banach spaces possessing an -net without weak limit points, Math. Methods and Phys. Mech. Fields 43 3 (2000), 40--43. (2000) MR1968634
- Banakh T., Plichko A., Zagorodnyuk A., 10.4064/cm100-1-13, Colloq. Math. 100 (2004), 141--147. (2004) MR2079354DOI10.4064/cm100-1-13
- Bourgain J., Fremlin D., Talagrand M., 10.2307/2373913, Amer. J. Math. 100 4 (1978), 845--886. (1978) Zbl0413.54016MR0509077DOI10.2307/2373913
- Castillo J., González M., Three-space problems in Banach space theory, Lecture Notes in Mathematics, 1667, Springer, Berlin, 1997. MR1482801
- Diestel J., Sequences and Series in Banach Spaces, Springer, New York, 1984. MR0737004
- Engelking R., General Topology, PWN, Warsaw, 1977. Zbl0684.54001MR0500780
- Fabian M., Gateaux Differentiability of Convex Functions and Topology, John Wiley & Sons, Inc., New York, 1997. Zbl0883.46011MR1461271
- Habala P., Hájek P., Zizler V., Introduction to Banach spaces, Matfyzpress, Praha, 1996.
- Odell E., Rosenthal H.P., 10.1007/BF02760341, Israel J. Math. 20 3--4 (1975), 375--384. (1975) MR0377482DOI10.1007/BF02760341
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.