A universal property of C 0 -semigroups

Gerd Herzog; Christoph Schmoeger

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 1, page 83-88
  • ISSN: 0010-2628

Abstract

top
Let T : [ 0 , ) L ( E ) be a C 0 -semigroup with unbounded generator A : D ( A ) E . We prove that ( T ( t ) x - x ) / t has generically a very irregular behaviour for x D ( A ) as t 0 + .

How to cite

top

Herzog, Gerd, and Schmoeger, Christoph. "A universal property of $C_0$-semigroups." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 83-88. <http://eudml.org/doc/32482>.

@article{Herzog2009,
abstract = {Let $T:[0, \infty ) \rightarrow L(E)$ be a $C_0$-semigroup with unbounded generator $A:D(A)\rightarrow E$. We prove that $(T(t)x-x)/t$ has generically a very irregular behaviour for $x\notin D(A)$ as $t \rightarrow 0+$.},
author = {Herzog, Gerd, Schmoeger, Christoph},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$C_0$-semigroups; universal elements; -semigroups; universal element},
language = {eng},
number = {1},
pages = {83-88},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A universal property of $C_0$-semigroups},
url = {http://eudml.org/doc/32482},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Herzog, Gerd
AU - Schmoeger, Christoph
TI - A universal property of $C_0$-semigroups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 83
EP - 88
AB - Let $T:[0, \infty ) \rightarrow L(E)$ be a $C_0$-semigroup with unbounded generator $A:D(A)\rightarrow E$. We prove that $(T(t)x-x)/t$ has generically a very irregular behaviour for $x\notin D(A)$ as $t \rightarrow 0+$.
LA - eng
KW - $C_0$-semigroups; universal elements; -semigroups; universal element
UR - http://eudml.org/doc/32482
ER -

References

top
  1. Goldberg S., Unbounded Linear Operators: Theory and Applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. Zbl1152.47001MR0200692
  2. Grosse-Erdmann K.-G., 10.1090/S0273-0979-99-00788-0, Bull. Amer. Math. Soc. (N.S.) 36 (1999), 345--381. (1999) Zbl0933.47003MR1685272DOI10.1090/S0273-0979-99-00788-0
  3. Herzog G., Lemmert R., On Hölder continuous universal primitives, Bull. Korean Math. Soc, to appear. Zbl1163.26304MR2502799
  4. Marcinkiewicz J., Sur les nombres dérivés, Fund. Math. 24 (1935), 305--308. (1935) Zbl0011.10705
  5. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer, New York, 1983. Zbl0516.47023MR0710486
  6. Taylor A.E., Lay D.C., Introduction to Functional Analysis, second edition, John Wiley & Sons, New York-Chichester-Brisbane, 1980. Zbl0654.46002MR0564653
  7. Wilansky A., Modern Methods in Topological Vector Spaces, McGraw-Hill International Book Co., New York, 1978. Zbl0395.46001MR0518316

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.