Moderate deviation principles for sums of i.i.d. random compact sets

Yu Miao

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 1, page 103-111
  • ISSN: 0010-2628

Abstract

top
We prove a moderate deviation principle for Minkowski sums of i.i.d. random compact sets in a Banach space.

How to cite

top

Miao, Yu. "Moderate deviation principles for sums of i.i.d. random compact sets." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 103-111. <http://eudml.org/doc/32484>.

@article{Miao2009,
abstract = {We prove a moderate deviation principle for Minkowski sums of i.i.d. random compact sets in a Banach space.},
author = {Miao, Yu},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {moderate deviation; random sets; moderate deviation; random set},
language = {eng},
number = {1},
pages = {103-111},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Moderate deviation principles for sums of i.i.d. random compact sets},
url = {http://eudml.org/doc/32484},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Miao, Yu
TI - Moderate deviation principles for sums of i.i.d. random compact sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 103
EP - 111
AB - We prove a moderate deviation principle for Minkowski sums of i.i.d. random compact sets in a Banach space.
LA - eng
KW - moderate deviation; random sets; moderate deviation; random set
UR - http://eudml.org/doc/32484
ER -

References

top
  1. Artstein Z., Vitale R.A., A strong law of large numbers for random compact sets, Ann. Probability (1975), 3 879--882. (1975) Zbl0313.60012MR0385966
  2. Chen X., Probabilities of moderate deviations for independent random vectors in a Banach space, Chinese J. Appl. Prob. Stat. (1991), 7 24--32. (1991) MR1204537
  3. Chen X., 10.1016/S0167-7152(97)00005-9, Statist. Probab. Lett. (1997), 35 123--134. (1997) Zbl0887.60010MR1483265DOI10.1016/S0167-7152(97)00005-9
  4. Cerf R., Large deviations for sums of i.i.d. random compact sets, Proc. Amer. Math. Soc. (1999), 127 8 2431--2436. (1999) Zbl0934.60017MR1487361
  5. Dembo A., Zeitouni O., Large Deviations Techniques and Applications, second edition, Springer, New York, 1998. Zbl0896.60013MR1619036
  6. Deuschel J.D., Stroock D.W., Large Deviations, Pure and Applied Mathematics, 137, Academic Press, Boston, MA, 1989. Zbl0791.60017MR0997938
  7. Dunford N., Schwartz J.T., Linear Operators. Part I: General Theory, Interscience Publishers, New York-London, 1958. Zbl0635.47001MR1009162
  8. Giné E., Hahn M.G., Zinn J., Limit theorems for random sets: an application of probability in Banach space results, Probability in Banach Spaces IV (Oberwolfach, 1982), Springer, Berlin, 1983, pp. 112--135. MR0707513
  9. Puri M.L., Ralescu D.A., Limit theorems for random compact sets in Banach space, Math. Proc. Cambridge Philos. Soc. (1985), 97 151--158. (1985) Zbl0559.60007MR0764504
  10. Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1966. Zbl1038.00002MR0210528
  11. Rudin W., Functional Analysis, McGraw-Hill, New York, 1973. Zbl0867.46001MR0365062
  12. Wu L.M., An introduction to large deviations, in Several Topics in Stochastic Analysis (J.A. Yan, S. Peng, S. Fang and L. Wu, Eds.), pp. 225--336, Academic Press of China, Beijing, 1997 (in Chinese). Zbl0575.60032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.