On Butler B ( 2 ) -groups decomposing over two base elements

Clorinda de Vivo; Claudia Metelli

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 2, page 165-179
  • ISSN: 0010-2628

Abstract

top
A B ( 2 ) -group is a sum of a finite number of torsionfree Abelian groups of rank 1 , subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.

How to cite

top

de Vivo, Clorinda, and Metelli, Claudia. "On Butler $B(2)$-groups decomposing over two base elements." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 165-179. <http://eudml.org/doc/32491>.

@article{deVivo2009,
abstract = {A $B(2)$-group is a sum of a finite number of torsionfree Abelian groups of rank $1$, subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.},
author = {de Vivo, Clorinda, Metelli, Claudia},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Abelian group; torsionfree; finite rank; Butler group; $B(1)$-group; $B(2)$-group; type; tent; base change; direct decomposition; typeset; torsionfree finite rank Abelian groups; Butler groups; -groups; -groups; types; tents; base changes; direct decompositions; typesets},
language = {eng},
number = {2},
pages = {165-179},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On Butler $B(2)$-groups decomposing over two base elements},
url = {http://eudml.org/doc/32491},
volume = {50},
year = {2009},
}

TY - JOUR
AU - de Vivo, Clorinda
AU - Metelli, Claudia
TI - On Butler $B(2)$-groups decomposing over two base elements
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 165
EP - 179
AB - A $B(2)$-group is a sum of a finite number of torsionfree Abelian groups of rank $1$, subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.
LA - eng
KW - Abelian group; torsionfree; finite rank; Butler group; $B(1)$-group; $B(2)$-group; type; tent; base change; direct decomposition; typeset; torsionfree finite rank Abelian groups; Butler groups; -groups; -groups; types; tents; base changes; direct decompositions; typesets
UR - http://eudml.org/doc/32491
ER -

References

top
  1. Fuchs L., Infinite Abelian Groups, Vol.II, Academic Press, London-New York, 1973. Zbl0338.20063MR0349869
  2. Arnold D.M., Abelian Groups and Representations of Finite Partially Ordered Sets, CMS books in Mathematics, 2, Springer, New York, 2000. Zbl0959.16011MR1764257
  3. Arnold D.M., Vinsonhaler C., Finite rank Butler groups: A survey of recent results, Abelian Groups (Curacao, 1991), Lecture Notes in Pure and Applied Math., 146, Marcel Dekker, 1993, pp. 17--41. Zbl0804.20043MR1217256
  4. Vinsonhaler C., Wallutis S.L., Wickless W.J., 10.1081/AGB-200063348, Comm. Algebra 33 (2005), no. 6, 2025--2037. Zbl1077.20062MR2150857DOI10.1081/AGB-200063348
  5. De Vivo C., Metelli C., 10.1081/AGB-120015998, Comm. Algebra 30 (2002), no. 12, 5621--5637. Zbl1019.20021MR1941915DOI10.1081/AGB-120015998
  6. De Vivo C., Metelli C., On degenerate B ( 2 ) -groups, Houston J. Math. 32 (2006), no. 3, 633--649. MR2247900
  7. De Vivo C., Metelli C., 10.4064/cm109-2-11, Colloq. Math. 109 (2007), no. 2, 297--305. Zbl1123.20044MR2318525DOI10.4064/cm109-2-11
  8. De Vivo C., Metelli C., 10.1016/j.jalgebra.2007.07.024, J. Algebra 318 (2007), no. 1, 456--483. Zbl1141.20032MR2363144DOI10.1016/j.jalgebra.2007.07.024
  9. De Vivo C., Metelli C., On direct decompositions of Butler B ( 2 ) -groups, Contributions to Module Theory, W. de Gruyter, 2007, pp. 1--18. Zbl1191.20059
  10. De Vivo C., Metelli C., The typeset of a B ( 2 ) -group, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.