# The fixed points and iterated order of some differential polynomials

Commentationes Mathematicae Universitatis Carolinae (2009)

- Volume: 50, Issue: 2, page 209-219
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topBelaidi, Benharrat. "The fixed points and iterated order of some differential polynomials." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 209-219. <http://eudml.org/doc/32494>.

@article{Belaidi2009,

abstract = {This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation \[ f^\{^\{\prime \prime \}\}+A\_\{1\}(z) f^\{^\{\prime \}\} + A\_\{0\}(z) f=F, \]
where $A_\{1\}(z)$, $A_\{0\}(z)$$(\lnot \equiv 0)$, $F$ are meromorphic functions of finite iterated $p$-order.},

author = {Belaidi, Benharrat},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {linear differential equations; differential polynomials; meromorphic solutions; iterated order; iterated exponent of convergence of the sequence of distinct zeros; linear differential equation; meromorphic solution; iterated order; iterated exponent},

language = {eng},

number = {2},

pages = {209-219},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {The fixed points and iterated order of some differential polynomials},

url = {http://eudml.org/doc/32494},

volume = {50},

year = {2009},

}

TY - JOUR

AU - Belaidi, Benharrat

TI - The fixed points and iterated order of some differential polynomials

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 2009

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 50

IS - 2

SP - 209

EP - 219

AB - This paper is devoted to considering the iterated order and the fixed points of some differential polynomials generated by solutions of the differential equation \[ f^{^{\prime \prime }}+A_{1}(z) f^{^{\prime }} + A_{0}(z) f=F, \]
where $A_{1}(z)$, $A_{0}(z)$$(\lnot \equiv 0)$, $F$ are meromorphic functions of finite iterated $p$-order.

LA - eng

KW - linear differential equations; differential polynomials; meromorphic solutions; iterated order; iterated exponent of convergence of the sequence of distinct zeros; linear differential equation; meromorphic solution; iterated order; iterated exponent

UR - http://eudml.org/doc/32494

ER -

## References

top- Belaidi B., Oscillation of fixed points of solutions of some linear differential equations, Acta. Math. Univ. Comenianae 77 (2008), 2 263--269. (2008) Zbl1174.34528MR2489196
- Bernal L.G., On growth $k$-order of solutions of a complex homogeneous linear differential equations, Proc. Amer. Math. Soc. 101 (1987), 317--322. (1987) MR0902549
- Cao T.B., Yi H.X., 10.1007/s11424-007-9012-7, J. Syst. Sci. Complex. 20 (2007), 1 135--148. (2007) MR2329065DOI10.1007/s11424-007-9012-7
- Chen Z.X., The fixed points and hyper order of solutions of second order complex differential equations, Acta Math. Sci. Ser. A Chin. Ed. 20 (2000), 3 425-432 (in Chinese). (2000) Zbl0980.30022MR1792926
- Hayman W.K., Meromorphic Functions, Clarendon Press, Oxford, 1964. Zbl0667.30029MR0164038
- Kinnunen L., Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), 4 385--405. (1998) Zbl0934.34076MR1811183
- Laine I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993. Zbl0784.30002MR1207139
- Laine I., Rieppo J., 10.1080/02781070410001701092, Complex Var. Theory Appl. 49 (2004), 12 897--911. (2004) Zbl1080.34076MR2101213DOI10.1080/02781070410001701092
- Liu M.S., Zhang X.M., Fixed points of meromorphic solutions of higher order linear differential equations, Ann. Acad. Sci. Fenn. Math. 31 (2006), 191--211. (2006) Zbl1094.30036MR2210116
- Nevanlinna R., Eindeutige Analytische Funktionen, Zweite Auflage, reprint, Die Grundlehren der mathematischen Wissenschaften, 46, Springer, Berlin-New York, 1974. Zbl0278.30002MR0344426
- Wang J., Yi H.X., 10.1080/0278107021000037048, Complex Var. Theory Appl. 48 (2003), 1 83--94. (2003) Zbl1071.30029MR1953763DOI10.1080/0278107021000037048
- Zhang Q.T., Yang C.C., The Fixed Points and Resolution Theory of Meromorphic Functions, Beijing University Press, Beijing, 1988 (in Chinese).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.