On the existence of one-signed periodic solutions of some differential equations of second order
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2006)
- Volume: 45, Issue: 1, page 119-134
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topLigęza, Jan. "On the existence of one-signed periodic solutions of some differential equations of second order." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 45.1 (2006): 119-134. <http://eudml.org/doc/32510>.
@article{Ligęza2006,
abstract = {We study the existence of one-signed periodic solutions of the equations \begin\{align\} & x^\{\prime \prime \} (t) - a^2(t) x(t) + \mu f(t, x(t), x^\{\prime \}(t)) = 0, & x^\{\prime \prime \}(t) + a^2(t) x(t) = \mu f(t, x(t), x^\{\prime \}(t)), \end\{align\}
where $ \mu > 0$, $a: (-\infty , +\infty ) \rightarrow (0, \infty ) $ is continuous and 1-periodic, $f$ is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.},
author = {Ligęza, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {positive solutions; boundary value problems; cone; fixed point theorem},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Palacký University Olomouc},
title = {On the existence of one-signed periodic solutions of some differential equations of second order},
url = {http://eudml.org/doc/32510},
volume = {45},
year = {2006},
}
TY - JOUR
AU - Ligęza, Jan
TI - On the existence of one-signed periodic solutions of some differential equations of second order
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2006
PB - Palacký University Olomouc
VL - 45
IS - 1
SP - 119
EP - 134
AB - We study the existence of one-signed periodic solutions of the equations \begin{align} & x^{\prime \prime } (t) - a^2(t) x(t) + \mu f(t, x(t), x^{\prime }(t)) = 0, & x^{\prime \prime }(t) + a^2(t) x(t) = \mu f(t, x(t), x^{\prime }(t)), \end{align}
where $ \mu > 0$, $a: (-\infty , +\infty ) \rightarrow (0, \infty ) $ is continuous and 1-periodic, $f$ is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.
LA - eng
KW - positive solutions; boundary value problems; cone; fixed point theorem
UR - http://eudml.org/doc/32510
ER -
References
top- Agarwal R. P., Grace S. R., O’Regan D., Existence of positive solutions of semipositone Fredholm integral equation, Funkciałaj Equaciaj 45 (2002), 223–235. MR1948600
- Agarwal R. P., O’Regan D., Wang J. Y.: Positive Solutions of Differential, Difference, Integral Equations., Kluwer Academic Publishers, Dordrecht, Boston, London, , 1999. (1999) MR1680024
- Agarwal R. P., O’Regan D.: Infinite Interval Problems For Differential, Difference, Integral Equations., Kluwer Acad. Publishers, Dordrecht, Boston, London, , 2001. MR1845855
- Deimling K.: Nonlinear Functional Analysis., Springer, New York, , 1985. (1985) MR0787404
- Guo D., Lakshmikannthan V.: Nonlinear Problems in Abstract Cones., Academic Press, San Diego, , 1988. (1988) MR0959889
- Santanilla J., 10.1016/0022-247X(87)90049-7, J. Math. Annal. Appl. 126 (1987), 397–408. (1987) Zbl0629.34017MR0900756DOI10.1016/0022-247X(87)90049-7
- Torres P. J., 10.1016/S0022-0396(02)00152-3, J. Diff. Eq. 190 (2003), 643–662. (190) MR1970045DOI10.1016/S0022-0396(02)00152-3
- Zima M.: Positive Operators in Banach Spaces, Their Applications., Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów, 2005. MR2493071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.