On the existence of one-signed periodic solutions of some differential equations of second order

Jan Ligęza

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2006)

  • Volume: 45, Issue: 1, page 119-134
  • ISSN: 0231-9721

Abstract

top
We study the existence of one-signed periodic solutions of the equations x ' ' ( t ) - a 2 ( t ) x ( t ) + μ f ( t , x ( t ) , x ' ( t ) ) = 0 , x ' ' ( t ) + a 2 ( t ) x ( t ) = μ f ( t , x ( t ) , x ' ( t ) ) , where μ > 0 , a : ( - , + ) ( 0 , ) is continuous and 1-periodic, f is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.

How to cite

top

Ligęza, Jan. "On the existence of one-signed periodic solutions of some differential equations of second order." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 45.1 (2006): 119-134. <http://eudml.org/doc/32510>.

@article{Ligęza2006,
abstract = {We study the existence of one-signed periodic solutions of the equations \begin\{align\} & x^\{\prime \prime \} (t) - a^2(t) x(t) + \mu f(t, x(t), x^\{\prime \}(t)) = 0, & x^\{\prime \prime \}(t) + a^2(t) x(t) = \mu f(t, x(t), x^\{\prime \}(t)), \end\{align\} where $ \mu > 0$, $a: (-\infty , +\infty ) \rightarrow (0, \infty ) $ is continuous and 1-periodic, $f$ is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.},
author = {Ligęza, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {positive solutions; boundary value problems; cone; fixed point theorem},
language = {eng},
number = {1},
pages = {119-134},
publisher = {Palacký University Olomouc},
title = {On the existence of one-signed periodic solutions of some differential equations of second order},
url = {http://eudml.org/doc/32510},
volume = {45},
year = {2006},
}

TY - JOUR
AU - Ligęza, Jan
TI - On the existence of one-signed periodic solutions of some differential equations of second order
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2006
PB - Palacký University Olomouc
VL - 45
IS - 1
SP - 119
EP - 134
AB - We study the existence of one-signed periodic solutions of the equations \begin{align} & x^{\prime \prime } (t) - a^2(t) x(t) + \mu f(t, x(t), x^{\prime }(t)) = 0, & x^{\prime \prime }(t) + a^2(t) x(t) = \mu f(t, x(t), x^{\prime }(t)), \end{align} where $ \mu > 0$, $a: (-\infty , +\infty ) \rightarrow (0, \infty ) $ is continuous and 1-periodic, $f$ is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.
LA - eng
KW - positive solutions; boundary value problems; cone; fixed point theorem
UR - http://eudml.org/doc/32510
ER -

References

top
  1. Agarwal R. P., Grace S. R., O’Regan D., Existence of positive solutions of semipositone Fredholm integral equation, Funkciałaj Equaciaj 45 (2002), 223–235. MR1948600
  2. Agarwal R. P., O’Regan D., Wang J. Y.: Positive Solutions of Differential, Difference, Integral Equations., Kluwer Academic Publishers, Dordrecht, Boston, London, , 1999. (1999) MR1680024
  3. Agarwal R. P., O’Regan D.: Infinite Interval Problems For Differential, Difference, Integral Equations., Kluwer Acad. Publishers, Dordrecht, Boston, London, , 2001. MR1845855
  4. Deimling K.: Nonlinear Functional Analysis., Springer, New York, , 1985. (1985) MR0787404
  5. Guo D., Lakshmikannthan V.: Nonlinear Problems in Abstract Cones., Academic Press, San Diego, , 1988. (1988) MR0959889
  6. Santanilla J., 10.1016/0022-247X(87)90049-7, J. Math. Annal. Appl. 126 (1987), 397–408. (1987) Zbl0629.34017MR0900756DOI10.1016/0022-247X(87)90049-7
  7. Torres P. J., 10.1016/S0022-0396(02)00152-3, J. Diff. Eq. 190 (2003), 643–662. (190) MR1970045DOI10.1016/S0022-0396(02)00152-3
  8. Zima M.: Positive Operators in Banach Spaces, Their Applications., Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszów, 2005. MR2493071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.