Prox-regularization and solution of ill-posed elliptic variational inequalities
Alexander Kaplan; Rainer Tichatschke
Applications of Mathematics (1997)
- Volume: 42, Issue: 2, page 111-145
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKaplan, Alexander, and Tichatschke, Rainer. "Prox-regularization and solution of ill-posed elliptic variational inequalities." Applications of Mathematics 42.2 (1997): 111-145. <http://eudml.org/doc/32972>.
@article{Kaplan1997,
abstract = {In this paper new methods for solving elliptic variational inequalities with weakly coercive operators are considered. The use of the iterative prox-regularization coupled with a successive discretization of the variational inequality by means of a finite element method ensures well-posedness of the auxiliary problems and strong convergence of their approximate solutions to a solution of the original problem. In particular, regularization on the kernel of the differential operator and regularization with respect to a weak norm of the space are studied. These approaches are illustrated by two nonlinear problems in elasticity theory.},
author = {Kaplan, Alexander, Tichatschke, Rainer},
journal = {Applications of Mathematics},
keywords = {prox-regularization; ill-posed elliptic variational inequalities; finite element methods; two-body contact problem; stable numerical methods; contact problem; strong convergence; weakly coercive operators; contact problem; strong convergence; weakly coercive operators},
language = {eng},
number = {2},
pages = {111-145},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Prox-regularization and solution of ill-posed elliptic variational inequalities},
url = {http://eudml.org/doc/32972},
volume = {42},
year = {1997},
}
TY - JOUR
AU - Kaplan, Alexander
AU - Tichatschke, Rainer
TI - Prox-regularization and solution of ill-posed elliptic variational inequalities
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 2
SP - 111
EP - 145
AB - In this paper new methods for solving elliptic variational inequalities with weakly coercive operators are considered. The use of the iterative prox-regularization coupled with a successive discretization of the variational inequality by means of a finite element method ensures well-posedness of the auxiliary problems and strong convergence of their approximate solutions to a solution of the original problem. In particular, regularization on the kernel of the differential operator and regularization with respect to a weak norm of the space are studied. These approaches are illustrated by two nonlinear problems in elasticity theory.
LA - eng
KW - prox-regularization; ill-posed elliptic variational inequalities; finite element methods; two-body contact problem; stable numerical methods; contact problem; strong convergence; weakly coercive operators; contact problem; strong convergence; weakly coercive operators
UR - http://eudml.org/doc/32972
ER -
References
top- Contribution à la résolution numérique des inclusions différentielles, Thèse de 3 cycle, Montpellier, 1985. (1985)
- 10.1007/BF01586942, Math. Programming 51 (1991), 307–331. (1991) MR1130329DOI10.1007/BF01586942
- Regularization methods for convex programming problems, Ekonomika i Mat. Metody 11 (1975), 336–342. (Russian) (1975)
- On a method for convex programs using a symmetrical modification of the Lagrange function, Ekonomika i Mat. Metody 12 (1976), 1164–1173 (in Russian). (1976)
- Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, London, 1984. (1984) MR0773850
- 10.1090/S0002-9947-1986-0837797-X, Transactions of the Amer. Math. Soc. 296 (1984), 33–60. (1984) MR0837797DOI10.1090/S0002-9947-1986-0837797-X
- 10.1007/BFb0121157, Mathem. Programming Study 30 (1987), 102–126. (1987) Zbl0616.90052MR0874134DOI10.1007/BFb0121157
- 10.1007/BF00939042, JOTA 55 (1987), 1–21. (1987) MR0915675DOI10.1007/BF00939042
- About the solution of variational inequalities, Soviet Math. Doklady 15 (1974), 1705–1710. (1974)
- 10.1007/BF01442654, Appl. Math. Optim. 15 (1987), 251–277. (1987) MR0879498DOI10.1007/BF01442654
- 10.1007/BF02761171, Israel J. of Math. 29 (1978), 329–345. (1978) MR0491922DOI10.1007/BF02761171
- The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972. (1972) MR0464857
- Boundary Value Problems of Elasticity with Unilateral Constraints, Springer-Verlag, Berlin 1972.
- Practical Methods of Optimization, J. Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapure, 1990. (1990) MR1867781
- 10.1287/opre.31.1.101, Operations Research 31 (1983), 101–113. (1983) Zbl0495.90066MR0695607DOI10.1287/opre.31.1.101
- Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981. (1981) Zbl1169.65064MR0635927
- 10.1137/0329022, SIAM. J. Control and Optim. 29 (1991), 403–419. (1991) MR1092735DOI10.1137/0329022
- 10.1090/qam/1146620, Quarterly of Applied Mathematics 50 (1992), 11–25. (1992) Zbl0743.73025MR1146620DOI10.1090/qam/1146620
- 10.1137/0328029, SIAM J. on Control and Optimization 28 (1990), 503–512. (1990) Zbl0699.49037MR1047419DOI10.1137/0328029
- The reciprocal variational approach to the Signorini problem with friction, Approximation Results. Proc. Roy. Soc. Edinburgh 98A (1984), 365–383. (1984) MR0768357
- Numerical Solution of Variational Inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1988. (1988)
- On inequalities of Korn’s type, I. Boundary-value problems for elliptic systems of partial differential equations, Arch. Rat. Mech. Anal. 306 (1970), 305–311. (1970) MR0252844
- 10.1007/BF00253807, Computational Optimization and Application 1 (1992), 207–226. (1992) Zbl1168.47046MR1226336DOI10.1007/BF00253807
- Algorithm for convex programming using a smoothing for exact penalty functions, Sibirskij Mat. Journal 23 (1982), 53–64. (Russian) (1982) MR0668335
- 10.1080/02331939208843852, Optimization 26 (1992), 187–214. (1992) MR1236607DOI10.1080/02331939208843852
- Regularized penalty methods for semi-infinite programming problems, Proc. of the 3rd Intern. Conf. On Parametric Optimization., F. Deutsch. B. Brosowski and J. Guddat (eds.), Ser. Approximation and Optimization, vol. 3, P. Lang Verlag, Frankfurt/Main, 1993, 341–356. (1993, 341–356) MR1241232
- 10.1080/02331939508844083, Optimization 33 (1995), 287–319. (1995) MR1332941DOI10.1080/02331939508844083
- Solution of variational inequalities by mathematical programming methods, Ph. D. Thesis, Novosibirsk, 1987. (Russian) (1987)
- The proximal algorithm, Internat. Series of Numerical Mathematics 87 (1989), 73–87. (1989) Zbl0692.90079MR1001168
- 10.1137/0322019, SIAM J. on Control and Optimization 22 (1984), 277–293. (1984) MR0732428DOI10.1137/0322019
- Régularisation d’inéquations variationelles par approximations successives, RIRO 4 (1970), 154–159. (1970) MR0298899
- 10.1016/0001-8708(69)90009-7, Advances in Mathematics 3 (1969), 510–585. (1969) Zbl0192.49101MR0298508DOI10.1016/0001-8708(69)90009-7
- Une méthode de pénalisation exponentielle associée à une régularisation proximale, Bull. Soc. Roy. Sc. de Liège 56 (1987), 181–192. (1987) MR0911355
- Mathematical Theory of Elastic and Elasto-plastic Bodies, An Introduction, Elsevier, Amsterdam, 1981. (1981) MR0600655
- 10.1090/S0002-9904-1967-11761-0, Bull. Amer. Math. Soc. 73 (1967), 591–597. (1967) MR0211301DOI10.1090/S0002-9904-1967-11761-0
- 10.1007/BF00534623, Ing. Archiv 44 (1975), 421–432. (1975) Zbl0332.73018MR0426584DOI10.1007/BF00534623
- Inequality Problems in Mechanics and Applications, Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1985. (1985) Zbl0579.73014MR0896909
- Introduction to Optimization, Optimization Software, Inc. Publ. Division, New York, 1987. (1987) MR1099605
- 10.1137/0314056, SIAM J. Control and Optimization 15 (1976), 877–898. (1976) Zbl0358.90053MR0410483DOI10.1137/0314056
- 10.1287/moor.1.2.97, Math. Oper. Res. 1 (1976), 97–116. (1976) MR0418919DOI10.1287/moor.1.2.97
- 10.1051/m2an/1977110201971, RAIRO Anal. Numér. 11 (1977), 197–208. (1977) MR0488860DOI10.1051/m2an/1977110201971
- 10.1007/BF01448388, Applied Mathematics and Optimization 10 (1983), 247–265. (1983) Zbl0524.90072MR0722489DOI10.1007/BF01448388
- Application of the method of partial inverses to convex programming: Decomposition, Math. Programming 32 (1985), 199–223. (1985) MR0793690
- Algorithme du point proximal perturbé et applications, Prépublication No. 90-015, Inst. de Mathématique, Univ. de Liège, 1990. (1990)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.