A general class of entropy statistics

María Dolores Esteban

Applications of Mathematics (1997)

  • Volume: 42, Issue: 3, page 161-169
  • ISSN: 0862-7940

Abstract

top
To study the asymptotic properties of entropy estimates, we use a unified expression, called the H h , v ϕ 1 , ϕ 2 -entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations.

How to cite

top

Esteban, María Dolores. "A general class of entropy statistics." Applications of Mathematics 42.3 (1997): 161-169. <http://eudml.org/doc/32974>.

@article{Esteban1997,
abstract = {To study the asymptotic properties of entropy estimates, we use a unified expression, called the $H^\{\varphi _\{1\},\varphi _\{2\}\}_\{h,v\}$-entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations.},
author = {Esteban, María Dolores},
journal = {Applications of Mathematics},
keywords = {entropy; asymptotic distribution; maximum likelihood estimators; testing statistical hypotheses; entropy; maximum likelihood estimators},
language = {eng},
number = {3},
pages = {161-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A general class of entropy statistics},
url = {http://eudml.org/doc/32974},
volume = {42},
year = {1997},
}

TY - JOUR
AU - Esteban, María Dolores
TI - A general class of entropy statistics
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 3
SP - 161
EP - 169
AB - To study the asymptotic properties of entropy estimates, we use a unified expression, called the $H^{\varphi _{1},\varphi _{2}}_{h,v}$-entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations.
LA - eng
KW - entropy; asymptotic distribution; maximum likelihood estimators; testing statistical hypotheses; entropy; maximum likelihood estimators
UR - http://eudml.org/doc/32974
ER -

References

top
  1. 10.1007/BF01901932, Act. Math. Acad. Sci. Hungar. 14 (1963), 95–121. (1963) MR0191738DOI10.1007/BF01901932
  2. 10.1016/S0019-9958(71)90065-9, Information and Control. 19 (1971), 181–194. (1971) Zbl0222.94022MR0309224DOI10.1016/S0019-9958(71)90065-9
  3. 10.1109/TIT.1968.1054185, IEEE Trans. Inf. Th. IT-4 (1968), 593–594. (1968) DOI10.1109/TIT.1968.1054185
  4. Entropías y divergencias ponderadas: Aplicaciones estadísticas, Ph.D. Thesis, Universidad Complutense de Madrid, Spain, 1994. (1994) 
  5. Hypoentropy and related heterogeneity divergence measures, Statistica 40 (1980), 55–118. (1980) MR0586545
  6. Medidas de incertidumbre e información en problemas de decisión estadística, Rev. de la R. Ac. de CC. Exactas, Físicas y Naturales de Madrid LXIX (1975), 549–610. (1975) MR0394956
  7. Concept of structural α -entropy, Kybernetika 3 (1967), 30–35. (1967) MR0209067
  8. Generalized entropy of order α and type β , The Math. Seminar 4 (1967), 78–82. (1967) MR0269428
  9. The use of information theory in the study of the diversity of biological populations, Proc. Fifth Berk. Symp. IV, 1979, pp. 163–177. (1979) 
  10. Linear statistical inference and its applications. 2nd ed, John Wiley, New York, 1973. (1973) Zbl0256.62002MR0346957
  11. On the measures of entropy and information, Proc. 4th Berkeley Symp. Math. Statist. and Prob. 1, 1961, pp. 547–561. (1961) MR0132570
  12. Trigonometric entropies, Jensen difference divergences and error bounds, Infor. Sci. 35 (1985), 145–156. (1985) Zbl0582.94009MR0794765
  13. 10.1002/j.1538-7305.1948.tb01338.x, Bell. System Tech. J. 27 (1948), 379–423. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
  14. New non-additive measures of relative information, J. Comb. Inform. & Syst. Sci. 2 (1975), 122–133. (1975) MR0476167
  15. 10.1007/BF01899728, Metrika 22 (1975), 205–215. (1975) MR0398670DOI10.1007/BF01899728
  16. Three generalized additive measures of entropy, Elect. Infor. Kybern 13 (1977), 419–433. (1977) MR0530208
  17. A study of generalized measures in information theory, Ph.D. Thesis. University of Delhi, 1975. (1975) 
  18. Generalizations of Renyi’s entropy of order α , J. Math. Sci. 1 (1966), 34–48. (1966) Zbl0166.15401MR0210515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.