A general class of entropy statistics
Applications of Mathematics (1997)
- Volume: 42, Issue: 3, page 161-169
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topEsteban, María Dolores. "A general class of entropy statistics." Applications of Mathematics 42.3 (1997): 161-169. <http://eudml.org/doc/32974>.
@article{Esteban1997,
abstract = {To study the asymptotic properties of entropy estimates, we use a unified expression, called the $H^\{\varphi _\{1\},\varphi _\{2\}\}_\{h,v\}$-entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations.},
author = {Esteban, María Dolores},
journal = {Applications of Mathematics},
keywords = {entropy; asymptotic distribution; maximum likelihood estimators; testing statistical hypotheses; entropy; maximum likelihood estimators},
language = {eng},
number = {3},
pages = {161-169},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A general class of entropy statistics},
url = {http://eudml.org/doc/32974},
volume = {42},
year = {1997},
}
TY - JOUR
AU - Esteban, María Dolores
TI - A general class of entropy statistics
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 3
SP - 161
EP - 169
AB - To study the asymptotic properties of entropy estimates, we use a unified expression, called the $H^{\varphi _{1},\varphi _{2}}_{h,v}$-entropy. Asymptotic distributions for these statistics are given in several cases when maximum likelihood estimators are considered, so they can be used to construct confidence intervals and to test statistical hypotheses based on one or more samples. These results can also be applied to multinomial populations.
LA - eng
KW - entropy; asymptotic distribution; maximum likelihood estimators; testing statistical hypotheses; entropy; maximum likelihood estimators
UR - http://eudml.org/doc/32974
ER -
References
top- 10.1007/BF01901932, Act. Math. Acad. Sci. Hungar. 14 (1963), 95–121. (1963) MR0191738DOI10.1007/BF01901932
- 10.1016/S0019-9958(71)90065-9, Information and Control. 19 (1971), 181–194. (1971) Zbl0222.94022MR0309224DOI10.1016/S0019-9958(71)90065-9
- 10.1109/TIT.1968.1054185, IEEE Trans. Inf. Th. IT-4 (1968), 593–594. (1968) DOI10.1109/TIT.1968.1054185
- Entropías y divergencias ponderadas: Aplicaciones estadísticas, Ph.D. Thesis, Universidad Complutense de Madrid, Spain, 1994. (1994)
- Hypoentropy and related heterogeneity divergence measures, Statistica 40 (1980), 55–118. (1980) MR0586545
- Medidas de incertidumbre e información en problemas de decisión estadística, Rev. de la R. Ac. de CC. Exactas, Físicas y Naturales de Madrid LXIX (1975), 549–610. (1975) MR0394956
- Concept of structural -entropy, Kybernetika 3 (1967), 30–35. (1967) MR0209067
- Generalized entropy of order and type , The Math. Seminar 4 (1967), 78–82. (1967) MR0269428
- The use of information theory in the study of the diversity of biological populations, Proc. Fifth Berk. Symp. IV, 1979, pp. 163–177. (1979)
- Linear statistical inference and its applications. 2nd ed, John Wiley, New York, 1973. (1973) Zbl0256.62002MR0346957
- On the measures of entropy and information, Proc. 4th Berkeley Symp. Math. Statist. and Prob. 1, 1961, pp. 547–561. (1961) MR0132570
- Trigonometric entropies, Jensen difference divergences and error bounds, Infor. Sci. 35 (1985), 145–156. (1985) Zbl0582.94009MR0794765
- 10.1002/j.1538-7305.1948.tb01338.x, Bell. System Tech. J. 27 (1948), 379–423. (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- New non-additive measures of relative information, J. Comb. Inform. & Syst. Sci. 2 (1975), 122–133. (1975) MR0476167
- 10.1007/BF01899728, Metrika 22 (1975), 205–215. (1975) MR0398670DOI10.1007/BF01899728
- Three generalized additive measures of entropy, Elect. Infor. Kybern 13 (1977), 419–433. (1977) MR0530208
- A study of generalized measures in information theory, Ph.D. Thesis. University of Delhi, 1975. (1975)
- Generalizations of Renyi’s entropy of order , J. Math. Sci. 1 (1966), 34–48. (1966) Zbl0166.15401MR0210515
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.