A survey of results on nonlinear Venttsel problems

Darya E. Apushkinskaya; Alexander I. Nazarov

Applications of Mathematics (2000)

  • Volume: 45, Issue: 1, page 69-80
  • ISSN: 0862-7940

Abstract

top
We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces.

How to cite

top

Apushkinskaya, Darya E., and Nazarov, Alexander I.. "A survey of results on nonlinear Venttsel problems." Applications of Mathematics 45.1 (2000): 69-80. <http://eudml.org/doc/33049>.

@article{Apushkinskaya2000,
abstract = {We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces.},
author = {Apushkinskaya, Darya E., Nazarov, Alexander I.},
journal = {Applications of Mathematics},
keywords = {Venttsel boundary conditions; elliptic equations; parabolic equations; a priori estimates; existence theorems; boundary value problems; Venttsel boundary conditions; elliptic equations; parabolic equations; a priori estimates; existence theorems; boundary value problems},
language = {eng},
number = {1},
pages = {69-80},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A survey of results on nonlinear Venttsel problems},
url = {http://eudml.org/doc/33049},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Apushkinskaya, Darya E.
AU - Nazarov, Alexander I.
TI - A survey of results on nonlinear Venttsel problems
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 1
SP - 69
EP - 80
AB - We review the recent results for boundary value problems with boundary conditions given by second-order integral-differential operators. Particular attention has been paid to nonlinear problems (without integral terms in the boundary conditions) for elliptic and parabolic equations. For these problems we formulate some statements concerning a priori estimates and the existence theorems in Sobolev and Hölder spaces.
LA - eng
KW - Venttsel boundary conditions; elliptic equations; parabolic equations; a priori estimates; existence theorems; boundary value problems; Venttsel boundary conditions; elliptic equations; parabolic equations; a priori estimates; existence theorems; boundary value problems
UR - http://eudml.org/doc/33049
ER -

References

top
  1. An estimate for the maximum of solutions of parabolic equations with the Venttsel condition, Vestnik Leningrad Univ. Mat. Mekh. Astronom. (1991), 3–12. (1991) MR1166371
  2. Gradient estimates for solutions of stationary degenerate Venttsel problems I, Research rep. no. MRR 058–97, Austral. Nat. Univ., Centre for Math. Anal. (1997). (1997) 
  3. Gradient estimates for solutions of stationary degenerate Venttsel problems II, Research rep. no. MRR 019–98, Austral. Nat. Univ., Centre for Math. Anal. (1998). (1998) 
  4. Gradient estimates for solutions of stationary degenerate Venttsel problems, Probl. Mat. Anal. 18 (1998), 43–69. (1998) 
  5. Hölder estimates of solutions to degenerate Venttsel boundary value problems for parabolic and elliptic equations of nondivergent form, Probl. Mat. Anal. 17 (1997), 3–18. (1997) 
  6. Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel (Venttsel) boundary condition, Amer. Math. Soc. Transl. (2) 64 (1995), 1–13. (1995) MR1334136
  7. On the quasilinear stationary Venttsel problem, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 221 (1995), 20–29. (1995) MR1359746
  8. The initial-boundary value problem for nondivergent parabolic equation with Venttsel boundary condition, Algebra Anal. 6 (1994), 1–29. (1994) MR1322117
  9. The nonstationary Venttsel problem with quadratic growth with respect to the gradient, Probl. Mat. Anal. 15 (1995), 33–46. (1995) MR1420673
  10. 10.1137/0120047, SIAM J. Appl. Math. 3 (1971), 434–448. (1971) DOI10.1137/0120047
  11. On shrinking nonnegative semigroups with nonlocal conditions, Mat. Sb. 165(207) (1998), 45–75. (1998) MR1616432
  12. Stochastic Differential Equations and Diffusion Processes, (1981), North-Holland, Amsterdam-New York, Kodansha, Tokyo. (1981) MR0637061
  13. 10.1016/0362-546X(83)90063-9, Nonlinear Anal. 7 (1983), 873–879. (1983) Zbl0523.35006MR0709040DOI10.1016/0362-546X(83)90063-9
  14. 10.1016/0362-546X(86)90116-1, Nonlinear Anal. 10 (1986), 1471–1476. (1986) Zbl0621.35008MR0869554DOI10.1016/0362-546X(86)90116-1
  15. A survey of results on the solvability of boundary value problems for uniformly elliptic and parabolic second order quasilinear equations having unbounded singularities, Uspekhi Mat. Nauk 41 (1986), 59–83. (1986) MR0878325
  16. Ventcel’ boundary value problem in a non-smooth domain, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 531–534. (1985) MR0792383
  17. Second Order Parabolic Differential Equations, World Scientific, Singapore-New Jersey-London-Hong Kong, 1996. (1996) Zbl0884.35001MR1465184
  18. 10.1090/S0002-9947-1986-0833695-6, Trans. Am. Math. Soc. 295 (1986), 509–545. (1986) MR0833695DOI10.1090/S0002-9947-1986-0833695-6
  19. A solution of Venttsel problems for the Laplacian and the Helmholtz equation by iterated potentials, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 250 (1998). (1998) 
  20. 10.1006/jdeq.1993.1011, J. Diff. Eq. 101 (2) (1993), 213–231. (1993) MR1204327DOI10.1006/jdeq.1993.1011
  21. Quasilinear second order elliptic equations with elliptic Venttsel boundary conditions, Nonlinear Anal. 16 (1991), 761–769. (1991) 
  22. Linear second order elliptic equations with Venttsel boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 118 (1991), 193–207. (1991) MR1121663
  23. On the estimates of the Hölder constants for solutions of the oblique derivative problem for a parabolic equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), 130–131. (1987) MR0918945
  24. Interpolation of linear spaces and maximum estimates for solutions of parabolic equations, Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 50–72. (1987) MR0994027
  25. 10.1093/imamat/25.4.367, J. Inst. Math. Applic. 25 (1980), 367–385. (1980) Zbl0441.76009MR0578084DOI10.1093/imamat/25.4.367
  26. Nonlinear boundary value problem for elliptic equations in general form, Part. Diff. Eq., Acad. Nauk SSSR, Siberian Dep. Math. Inst., Novosibirsk, 1987, pp. 95–112. (1987) MR0994029
  27. On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen. 4 (1959), 172–185. (1959) Zbl0089.13404
  28. Construction of diffusion processes with Venttsel boundary conditions by means of Poisson point processes of Brownian excursions, Probability theory, Banach center Publ., vol. 5, PWN, Warsaw, 1979, pp. 255–271. (1979) MR0561485

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.