On the domain dependence of solutions to the two-phase Stefan problem

Eduard Feireisl; Hana Petzeltová

Applications of Mathematics (2000)

  • Volume: 45, Issue: 2, page 131-144
  • ISSN: 0862-7940

Abstract

top
We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains Ω n N converge to a solution of the same problem on a domain Ω where Ω is the limit of Ω n in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on N .

How to cite

top

Feireisl, Eduard, and Petzeltová, Hana. "On the domain dependence of solutions to the two-phase Stefan problem." Applications of Mathematics 45.2 (2000): 131-144. <http://eudml.org/doc/33052>.

@article{Feireisl2000,
abstract = {We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb \{R\}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb \{R\}^N$.},
author = {Feireisl, Eduard, Petzeltová, Hana},
journal = {Applications of Mathematics},
keywords = {Stefan problem; domain dependence; Mosco-type covergence of domains; Stefan problem; domain dependence; Mosco-type covergence of domains},
language = {eng},
number = {2},
pages = {131-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the domain dependence of solutions to the two-phase Stefan problem},
url = {http://eudml.org/doc/33052},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Feireisl, Eduard
AU - Petzeltová, Hana
TI - On the domain dependence of solutions to the two-phase Stefan problem
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 2
SP - 131
EP - 144
AB - We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb {R}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb {R}^N$.
LA - eng
KW - Stefan problem; domain dependence; Mosco-type covergence of domains; Stefan problem; domain dependence; Mosco-type covergence of domains
UR - http://eudml.org/doc/33052
ER -

References

top
  1. Solutions renormalisées d’equations paraboliques à deux non linéarités, C. R. Acad. Sci. Paris, Sér. I, 319 (1994), 831–835. (1994) MR1300952
  2. 10.1016/0362-546X(92)90023-8, Nonlinear Analysis 19 (6) (1992), 581–597. (1992) MR1183665DOI10.1016/0362-546X(92)90023-8
  3. N -dimensional shape optimization under capacity constraints, J. Differential Equations 123 (1995), 544–522. (1995) MR1362884
  4. 10.1090/S0273-0979-1992-00266-5, Bull. Amer. Math. Soc. 27 (1) (1992), 1–67. (1992) MR1118699DOI10.1090/S0273-0979-1992-00266-5
  5. Wiener’s criterion and Γ convergence, Appl. Math. Optim. 15, 15–63. MR0866165
  6. The effect of domain shape on the number of positive solutions of certain nonlinear equations, II, J. Differential Equations 87 (1990), 316–339. (1990) Zbl0729.35050MR1072904
  7. 10.1006/jdeq.1996.0122, J. Differential Equations 129 (2) (1996), 358–402. (1996) Zbl0868.35059MR1404388DOI10.1006/jdeq.1996.0122
  8. Interior and boundary regularity for a class of free boundary problems, In: Free boundary problems: theory and applications, II., A. Fasano, M. Primicerio (eds.), Research Notes in Math., vol. 78, Pitman, Boston, 1983, pp. 383–396. (1983) Zbl0516.35081MR0714925
  9. Variational Principles and Free-Boundary Problems, John Wiley, New York, 1982. (1982) Zbl0564.49002MR0679313
  10. 10.1007/BF00275730, Arch. Rat. Mech. Anal. 86 (1984), 99–123. (1984) MR0751304DOI10.1007/BF00275730
  11. Continuity with respect to the domain for the Laplacian: a survey, Control Cybernet. 23 (3) (1994), 427–443. (1994) Zbl0822.35029MR1303362
  12. The Stefan Problem, De Gruyter, Berlin, 1992. (1992) Zbl0751.35052MR1154310
  13. Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984. (1984) Zbl0534.49001MR0725856
  14. Potential and scattering theory on wildly perturbed domains, J. Functional Anal. 18 (1975), 27–59. (1975) MR0377303
  15. On optimal shape design, J. Math. Pures Appl. 72 (1993), 537–551. (1993) MR1249408

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.