On the domain dependence of solutions to the two-phase Stefan problem
Eduard Feireisl; Hana Petzeltová
Applications of Mathematics (2000)
- Volume: 45, Issue: 2, page 131-144
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFeireisl, Eduard, and Petzeltová, Hana. "On the domain dependence of solutions to the two-phase Stefan problem." Applications of Mathematics 45.2 (2000): 131-144. <http://eudml.org/doc/33052>.
@article{Feireisl2000,
abstract = {We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb \{R\}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb \{R\}^N$.},
author = {Feireisl, Eduard, Petzeltová, Hana},
journal = {Applications of Mathematics},
keywords = {Stefan problem; domain dependence; Mosco-type covergence of domains; Stefan problem; domain dependence; Mosco-type covergence of domains},
language = {eng},
number = {2},
pages = {131-144},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the domain dependence of solutions to the two-phase Stefan problem},
url = {http://eudml.org/doc/33052},
volume = {45},
year = {2000},
}
TY - JOUR
AU - Feireisl, Eduard
AU - Petzeltová, Hana
TI - On the domain dependence of solutions to the two-phase Stefan problem
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 2
SP - 131
EP - 144
AB - We prove that solutions to the two-phase Stefan problem defined on a sequence of spatial domains $\Omega _n\subset \mathbb {R}^N$ converge to a solution of the same problem on a domain $\Omega $ where $\Omega $ is the limit of $\Omega _n $ in the sense of Mosco. The corresponding free boundaries converge in the sense of Lebesgue measure on $\mathbb {R}^N$.
LA - eng
KW - Stefan problem; domain dependence; Mosco-type covergence of domains; Stefan problem; domain dependence; Mosco-type covergence of domains
UR - http://eudml.org/doc/33052
ER -
References
top- Solutions renormalisées d’equations paraboliques à deux non linéarités, C. R. Acad. Sci. Paris, Sér. I, 319 (1994), 831–835. (1994) MR1300952
- 10.1016/0362-546X(92)90023-8, Nonlinear Analysis 19 (6) (1992), 581–597. (1992) MR1183665DOI10.1016/0362-546X(92)90023-8
- -dimensional shape optimization under capacity constraints, J. Differential Equations 123 (1995), 544–522. (1995) MR1362884
- 10.1090/S0273-0979-1992-00266-5, Bull. Amer. Math. Soc. 27 (1) (1992), 1–67. (1992) MR1118699DOI10.1090/S0273-0979-1992-00266-5
- Wiener’s criterion and convergence, Appl. Math. Optim. 15, 15–63. MR0866165
- The effect of domain shape on the number of positive solutions of certain nonlinear equations, II, J. Differential Equations 87 (1990), 316–339. (1990) Zbl0729.35050MR1072904
- 10.1006/jdeq.1996.0122, J. Differential Equations 129 (2) (1996), 358–402. (1996) Zbl0868.35059MR1404388DOI10.1006/jdeq.1996.0122
- Interior and boundary regularity for a class of free boundary problems, In: Free boundary problems: theory and applications, II., A. Fasano, M. Primicerio (eds.), Research Notes in Math., vol. 78, Pitman, Boston, 1983, pp. 383–396. (1983) Zbl0516.35081MR0714925
- Variational Principles and Free-Boundary Problems, John Wiley, New York, 1982. (1982) Zbl0564.49002MR0679313
- 10.1007/BF00275730, Arch. Rat. Mech. Anal. 86 (1984), 99–123. (1984) MR0751304DOI10.1007/BF00275730
- Continuity with respect to the domain for the Laplacian: a survey, Control Cybernet. 23 (3) (1994), 427–443. (1994) Zbl0822.35029MR1303362
- The Stefan Problem, De Gruyter, Berlin, 1992. (1992) Zbl0751.35052MR1154310
- Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984. (1984) Zbl0534.49001MR0725856
- Potential and scattering theory on wildly perturbed domains, J. Functional Anal. 18 (1975), 27–59. (1975) MR0377303
- On optimal shape design, J. Math. Pures Appl. 72 (1993), 537–551. (1993) MR1249408
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.