Order conditions for partitioned Runge-Kutta methods

Zdzisław Jackiewicz; Rossana Vermiglio

Applications of Mathematics (2000)

  • Volume: 45, Issue: 4, page 301-316
  • ISSN: 0862-7940

Abstract

top
We illustrate the use of the recent approach by P. Albrecht to the derivation of order conditions for partitioned Runge-Kutta methods for ordinary differential equations.

How to cite

top

Jackiewicz, Zdzisław, and Vermiglio, Rossana. "Order conditions for partitioned Runge-Kutta methods." Applications of Mathematics 45.4 (2000): 301-316. <http://eudml.org/doc/33061>.

@article{Jackiewicz2000,
abstract = {We illustrate the use of the recent approach by P. Albrecht to the derivation of order conditions for partitioned Runge-Kutta methods for ordinary differential equations.},
author = {Jackiewicz, Zdzisław, Vermiglio, Rossana},
journal = {Applications of Mathematics},
keywords = {partitioned Runge-Kutta method; ordinary differential equation; order conditions; partitioned Runge-Kutta method; order condition},
language = {eng},
number = {4},
pages = {301-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Order conditions for partitioned Runge-Kutta methods},
url = {http://eudml.org/doc/33061},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Jackiewicz, Zdzisław
AU - Vermiglio, Rossana
TI - Order conditions for partitioned Runge-Kutta methods
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 4
SP - 301
EP - 316
AB - We illustrate the use of the recent approach by P. Albrecht to the derivation of order conditions for partitioned Runge-Kutta methods for ordinary differential equations.
LA - eng
KW - partitioned Runge-Kutta method; ordinary differential equation; order conditions; partitioned Runge-Kutta method; order condition
UR - http://eudml.org/doc/33061
ER -

References

top
  1. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Washington, D.C., 1972. (1972) MR0757537
  2. 10.1137/0724030, SIAM J. Numer. Anal. 24 (1987), 391–406. (1987) Zbl0617.65067MR0881373DOI10.1137/0724030
  3. 10.1137/S0036142994260872, SIAM J. Numer. Anal. 33 (1996), 1712–1735. (1996) Zbl0858.65074MR1411846DOI10.1137/S0036142994260872
  4. 10.1090/S0025-5718-1982-0658219-8, Math. Comp. 39 (1982), 147–163. (1982) MR0658219DOI10.1090/S0025-5718-1982-0658219-8
  5. Gemischte Runge-Kutta-Verfahren für steife Systeme, In: Seminarbericht Nr. 11, Sekt, Math., Humboldt Univ. Berlin, 1978, pp. 19–29. (1978) Zbl0434.65044MR0540731
  6. 10.1007/BF01395956, Numer. Math. 36 (1981), 431–445. (1981) Zbl0462.65049MR0614858DOI10.1007/BF01395956
  7. Solving Ordinary Differential Equations I. Nonstiff Problems, Springer-Verlag, Berlin-Heidelberg-New York, 1991. (1991) MR1227985
  8. 10.1007/BF01733788, BIT 36 (1996), 688–712. (1996) MR1420272DOI10.1007/BF01733788
  9. A general class of two-step Runge-Kutta methods for ordinary differential equations, SIAM J. Numer. Anal. 32 (1995), 1390–1427. (1995) MR1352196
  10. 10.1007/BF02142812, Numer. Algorithms 12 (1996), 347–368. (1996) MR1402855DOI10.1007/BF02142812
  11. Numerical Hamiltonian Problems, Chapman & Hall, London-Glasgow-New York, 1994. (1994) MR1270017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.