Periodic solutions of a nonlinear evolution problem

Nelson Nery Oliveira Castro; Nirzi G. de Andrade

Applications of Mathematics (2002)

  • Volume: 47, Issue: 5, page 381-396
  • ISSN: 0862-7940

Abstract

top
In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.

How to cite

top

Oliveira Castro, Nelson Nery, and Andrade, Nirzi G. de. "Periodic solutions of a nonlinear evolution problem." Applications of Mathematics 47.5 (2002): 381-396. <http://eudml.org/doc/33121>.

@article{OliveiraCastro2002,
abstract = {In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.},
author = {Oliveira Castro, Nelson Nery, Andrade, Nirzi G. de},
journal = {Applications of Mathematics},
keywords = {periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian; periodic solution; fixed point; nonlinear evolution problem; pseudo-Laplacian},
language = {eng},
number = {5},
pages = {381-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions of a nonlinear evolution problem},
url = {http://eudml.org/doc/33121},
volume = {47},
year = {2002},
}

TY - JOUR
AU - Oliveira Castro, Nelson Nery
AU - Andrade, Nirzi G. de
TI - Periodic solutions of a nonlinear evolution problem
JO - Applications of Mathematics
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 5
SP - 381
EP - 396
AB - In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.
LA - eng
KW - periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian; periodic solution; fixed point; nonlinear evolution problem; pseudo-Laplacian
UR - http://eudml.org/doc/33121
ER -

References

top
  1. 10.1007/BF01109897, Math. Z. 105 (1968), 177–195. (1968) MR0232256DOI10.1007/BF01109897
  2. 10.1023/A:1022251012703, Appl. Math. 42 (1997), 411–420. (1997) Zbl0940.35139MR1475050DOI10.1023/A:1022251012703
  3. Fixed Point and Topological Degree in Nonlinear Analysis. Mathematical Surveys, No. 11, Amer. Math. Soc., Providence, 1964. (1964) MR0164101
  4. 10.1080/00036817408839083, Appl. Anal. 4 (1974), 63–76. (1974) MR0454278DOI10.1080/00036817408839083
  5. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
  6. Weak solutions of nonlinear Klein-Gordon equations, Ann. Math. Pura Appl. IV, ser. 146 (1987), 173–183. (1987) MR0916692
  7. 10.1090/psapm/017/0202406, Proc. Sympos. Appl. Math. Amer. Math. Soc. 17 (1965), 210–226. (1965) Zbl0152.23902MR0202406DOI10.1090/psapm/017/0202406
  8. Some nonlinear evolution equations of second order, Proc. Japan. Acad. Ser. A Math. Sci. 47 (1971), 950–955. (1971) Zbl0258.35017MR0312023
  9. Equations Différentielles et Intégrales, Dunod, Paris, 1971. (1971) Zbl0231.34002MR0344557
  10. Nonlinear Functional Analysis and its Applications: I—Fixed-Point Theorems, Springer-Verlag, New York, 1986. (1986) Zbl0583.47050MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.