Periodic solutions of a nonlinear evolution problem
Nelson Nery Oliveira Castro; Nirzi G. de Andrade
Applications of Mathematics (2002)
- Volume: 47, Issue: 5, page 381-396
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topOliveira Castro, Nelson Nery, and Andrade, Nirzi G. de. "Periodic solutions of a nonlinear evolution problem." Applications of Mathematics 47.5 (2002): 381-396. <http://eudml.org/doc/33121>.
@article{OliveiraCastro2002,
abstract = {In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.},
author = {Oliveira Castro, Nelson Nery, Andrade, Nirzi G. de},
journal = {Applications of Mathematics},
keywords = {periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian; periodic solution; fixed point; nonlinear evolution problem; pseudo-Laplacian},
language = {eng},
number = {5},
pages = {381-396},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions of a nonlinear evolution problem},
url = {http://eudml.org/doc/33121},
volume = {47},
year = {2002},
}
TY - JOUR
AU - Oliveira Castro, Nelson Nery
AU - Andrade, Nirzi G. de
TI - Periodic solutions of a nonlinear evolution problem
JO - Applications of Mathematics
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 5
SP - 381
EP - 396
AB - In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.
LA - eng
KW - periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian; periodic solution; fixed point; nonlinear evolution problem; pseudo-Laplacian
UR - http://eudml.org/doc/33121
ER -
References
top- 10.1007/BF01109897, Math. Z. 105 (1968), 177–195. (1968) MR0232256DOI10.1007/BF01109897
- 10.1023/A:1022251012703, Appl. Math. 42 (1997), 411–420. (1997) Zbl0940.35139MR1475050DOI10.1023/A:1022251012703
- Fixed Point and Topological Degree in Nonlinear Analysis. Mathematical Surveys, No. 11, Amer. Math. Soc., Providence, 1964. (1964) MR0164101
- 10.1080/00036817408839083, Appl. Anal. 4 (1974), 63–76. (1974) MR0454278DOI10.1080/00036817408839083
- Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
- Weak solutions of nonlinear Klein-Gordon equations, Ann. Math. Pura Appl. IV, ser. 146 (1987), 173–183. (1987) MR0916692
- 10.1090/psapm/017/0202406, Proc. Sympos. Appl. Math. Amer. Math. Soc. 17 (1965), 210–226. (1965) Zbl0152.23902MR0202406DOI10.1090/psapm/017/0202406
- Some nonlinear evolution equations of second order, Proc. Japan. Acad. Ser. A Math. Sci. 47 (1971), 950–955. (1971) Zbl0258.35017MR0312023
- Equations Différentielles et Intégrales, Dunod, Paris, 1971. (1971) Zbl0231.34002MR0344557
- Nonlinear Functional Analysis and its Applications: I—Fixed-Point Theorems, Springer-Verlag, New York, 1986. (1986) Zbl0583.47050MR0816732
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.