Study of some noncooperative linear elliptic systems

Ali Djellit; Saadia Tas

Applications of Mathematics (2004)

  • Volume: 49, Issue: 3, page 185-199
  • ISSN: 0862-7940

Abstract

top
Using an approximation method, we show the existence of solutions for some noncooperative elliptic systems defined on an unbounded domain.

How to cite

top

Djellit, Ali, and Tas, Saadia. "Study of some noncooperative linear elliptic systems." Applications of Mathematics 49.3 (2004): 185-199. <http://eudml.org/doc/33182>.

@article{Djellit2004,
abstract = {Using an approximation method, we show the existence of solutions for some noncooperative elliptic systems defined on an unbounded domain.},
author = {Djellit, Ali, Tas, Saadia},
journal = {Applications of Mathematics},
keywords = {Schrödinger’s operators; weighted Sobolev spaces; maximum principle; min-max formula; noncooperative systems; Schrödinger operators; weighted Sobolev spaces; maximum principle; min-max formula; noncooperative systems},
language = {eng},
number = {3},
pages = {185-199},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Study of some noncooperative linear elliptic systems},
url = {http://eudml.org/doc/33182},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Djellit, Ali
AU - Tas, Saadia
TI - Study of some noncooperative linear elliptic systems
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 3
SP - 185
EP - 199
AB - Using an approximation method, we show the existence of solutions for some noncooperative elliptic systems defined on an unbounded domain.
LA - eng
KW - Schrödinger’s operators; weighted Sobolev spaces; maximum principle; min-max formula; noncooperative systems; Schrödinger operators; weighted Sobolev spaces; maximum principle; min-max formula; noncooperative systems
UR - http://eudml.org/doc/33182
ER -

References

top
  1. Sobolev spaces, Academic Press, New York-San Francisco-London, 1978. (1978) Zbl0347.46040MR0450957
  2. Principal eigenvalues for problems with indefinite weight functions on N , Proc. Amer. Math. Soc. 109 (1990), 147–155. (1990) MR1007489
  3. Existence of solutions for some nonlinear cooperative systems, Differential Integral Equations 7 (1994), 689–698. (1994) MR1270098
  4. Problèmes elliptiques: Applications de la théorie spectrale et étude de systèmes, existence de solutions, PhD Thesis, Univ. des Sc. Sociales de Toulouse, 1997. (1997) 
  5. Maximum principles for a class of non-cooperative elliptic systems, Delft Progr. Rep. 14 (1990), 33–56. (1990) MR1045316
  6. 10.1016/0362-546X(94)00180-P, Nonlinear Anal. 25 (1995), 699–715. (1995) MR1341522DOI10.1016/0362-546X(94)00180-P
  7. Valeurs propres de problèmes elliptiques indéfinis sur des ouverts non bornés de N , PhD Thesis, U.P.S., Toulouse, 1992. (1992) 
  8. Valeurs propres de problèmes elliptiques, Boll. Unione Mat. Ital., VII.  Ser. B7 (1993), 857–874. (1993) MR1255651
  9. Existence and non-existence of a principal eigenvalue for some boundary value problems, Maghreb Math. Rev. 6 (1997), 29–37. (1997) MR1489164
  10. Principe du maximum pour un système elliptique non linéaire, C.R. Acad. Sci. Paris Sér. I Math. 314 (1992), 665–668. (1992) 
  11. On maximum principle and existence of solutions for some cooperative elliptic systems, Differential Integral Equations 8 (1995), 69–85. (1995) 
  12. A maximum principle for linear cooperative elliptic systems, In: Differential Equations with Applications to Mathematical Physics, W. F. Ames, E. M. Harrell, and J. V. Herod (eds.), Acad. Press, Boston, 1993, pp. 79–86. (1993) MR1207142
  13. 10.1137/0517060, SIAM J.  Math. Anal. 17 (1986), 836–849. (1986) MR0846392DOI10.1137/0517060
  14. Maximum principle for cooperative elliptic systems, C.R. Acad. Sci. Paris Sér. I Math. 310 (1990), 49–52. (1990) MR1044413
  15. Maximum principle for linear elliptic systems, Quaterno Matematico 177, Dip. Sc. Mat, Univ. Trieste, 1988. (1988) 
  16. Semilinear cooperative elliptic systems on  N , Rend. Mat. Appl. (7) 15 (1995), 89–108. (1995) MR1330181
  17. Espaces de Sobolev avec poids, application au problème de Dirichlet dans un demi espace, Rend. Sem. Mat. Univ. Padova 46 (1971), 227–272. (1971) MR0310417
  18. Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, 1967. (1967) MR0219861

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.