Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's
Applications of Mathematics (2005)
- Volume: 50, Issue: 1, page 63-81
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topVyoral, Michal. "Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's." Applications of Mathematics 50.1 (2005): 63-81. <http://eudml.org/doc/33205>.
@article{Vyoral2005,
abstract = {We consider a stochastic process $X_t^x$ which solves an equation \[ \{\mathrm \{d\}\}X\_t^x = AX\_t^x\mathrm \{d\}t + \Phi \{\mathrm \{d\}\}B^H\_t,\quad X\_0^x = x \]
where $A$ and $\Phi $ are real matrices and $B^H$ is a fractional Brownian motion with Hurst parameter $H \in (1/2,1)$. The Kolmogorov backward equation for the function $u(t,x) = \mathbb \{E\} f(X^x_t)$ is derived and exponential convergence of probability distributions of solutions to the limit measure is established.},
author = {Vyoral, Michal},
journal = {Applications of Mathematics},
keywords = {fractional Brownian motion; Kolmogorov backwards equation; linear stochastic equation; Kolmogorov backwards equation; linear stochastic equation},
language = {eng},
number = {1},
pages = {63-81},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's},
url = {http://eudml.org/doc/33205},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Vyoral, Michal
TI - Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 63
EP - 81
AB - We consider a stochastic process $X_t^x$ which solves an equation \[ {\mathrm {d}}X_t^x = AX_t^x\mathrm {d}t + \Phi {\mathrm {d}}B^H_t,\quad X_0^x = x \]
where $A$ and $\Phi $ are real matrices and $B^H$ is a fractional Brownian motion with Hurst parameter $H \in (1/2,1)$. The Kolmogorov backward equation for the function $u(t,x) = \mathbb {E} f(X^x_t)$ is derived and exponential convergence of probability distributions of solutions to the limit measure is established.
LA - eng
KW - fractional Brownian motion; Kolmogorov backwards equation; linear stochastic equation; Kolmogorov backwards equation; linear stochastic equation
UR - http://eudml.org/doc/33205
ER -
References
top- Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than , Stochastic Processes Appl. 86 (2000), 121–139. (2000) MR1741199
- 10.1016/S0764-4442(00)01594-9, C.R. Acad. Sci. Paris 331 (2000), 75–80. (2000) MR1780221DOI10.1016/S0764-4442(00)01594-9
- 10.1155/S104895339600038X, J. Appl. Math. Stochastic Anal. 9 (1996), 439–448. (1996) MR1429266DOI10.1155/S104895339600038X
- 10.1023/A:1008634027843, Potential Anal. 10 (1999), 177–214. (1999) MR1677455DOI10.1023/A:1008634027843
- An Introduction to -Variation and Young Integrals Concentrated Advanced Course, Maphysto, Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus, 1999. (1999)
- 10.1137/S036301299834171X, SIAM J. Control Optimization 38 (2000), 582–612. (2000) MR1741154DOI10.1137/S036301299834171X
- 10.1142/S0219493702000340, Stoch. Dyn. 2 (2002), 225–250. (2002) MR1912142DOI10.1142/S0219493702000340
- 10.1016/S0167-7152(98)00147-3, Statist. Probab. Lett. 41 (1999), 337–346. (1999) MR1666072DOI10.1016/S0167-7152(98)00147-3
- Matrix Analysis, Cambridge University Press, Cambridge, 1985. (1985) MR0832183
- Long-term storage capacity in reservoirs, Trans. Amer. Soc. Civil Eng. 116 (1951), 400–410. (1951)
- Methods of using long-term storage in reservoirs, Proc. Inst. Civil Engineers, Part I (1956), 519–590. (1956)
- Fractional Ornstein-Uhlenbeck processes, http://www.math.washington.edu/ ejpecp/EjpVol8/paper3.abs.html.
- Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Dokl.) Acad. Sci. URSS (N.S.) 26 (1940), 115–118. (1940) MR0003441
- 10.1016/S0304-4149(01)00145-4, Stochastic Process. Appl. 98 (2002), 289–315. (2002) Zbl1059.60068MR1887537DOI10.1016/S0304-4149(01)00145-4
- 10.1137/1010093, SIAM Rev. 10 (1968), 422–437. (1968) MR0242239DOI10.1137/1010093
- Evolution equations driven by a fractional Brownian motion, J. Funct. Anal (to appear). (to appear) MR1994773
- Differential equations driven by fractional Brownian motion, Collect. Math. 53 (2002), 55–81. (2002) MR1893308
- Real Analysis, Macmillan, New York, 1963. (1963) Zbl0121.05501MR0151555
- Fractional Langevin equation, Phys. Rev. E 64, 051106 (2001), . (2001)
- 10.1007/s004400050171, Probab. Theory Relat. Fields 111 (1998), 333–374. (1998) Zbl0918.60037MR1640795DOI10.1007/s004400050171
- 10.1142/S0219493702000406, Stoch. Dyn. 2 (2002), 265–280. (2002) Zbl1016.91053MR1912144DOI10.1142/S0219493702000406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.