Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners

Larisa Beilina; Sergey Korotov; Michal Křížek

Applications of Mathematics (2005)

  • Volume: 50, Issue: 6, page 569-581
  • ISSN: 0862-7940

Abstract

top
Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.

How to cite

top

Beilina, Larisa, Korotov, Sergey, and Křížek, Michal. "Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners." Applications of Mathematics 50.6 (2005): 569-581. <http://eudml.org/doc/33239>.

@article{Beilina2005,
abstract = {Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.},
author = {Beilina, Larisa, Korotov, Sergey, Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction; partial differential equations; finite element method; path tetrahedron},
language = {eng},
number = {6},
pages = {569-581},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners},
url = {http://eudml.org/doc/33239},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Beilina, Larisa
AU - Korotov, Sergey
AU - Křížek, Michal
TI - Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 6
SP - 569
EP - 581
AB - Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.
LA - eng
KW - partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction; partial differential equations; finite element method; path tetrahedron
UR - http://eudml.org/doc/33239
ER -

References

top
  1. Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numer. Math, B. G.  Teubner, Leipzig, 1999. (1999) MR1716824
  2. 10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8, Commun. Numer. Methods Eng. 12 (1996), 373–381. (1996) DOI10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8
  3. 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R, Math. Methods Appl. Sci. 21 (1998), 519–549. (1998) MR1615426DOI10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R
  4. Finite Element Solution of Boundary Value Problems. Theory and Computation, Academic Press, Orlando, 1984. (1984) MR0758437
  5. Dihedral bounds for mesh generation in high dimensions, Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), SIAM, Philadelphia, 1995, pp. 189–196. (1995) MR1321850
  6. 10.1002/nme.1620361808, Int. J.  Numer. Methods Eng. 36 (1993), 3187–3203. (1993) MR1236370DOI10.1002/nme.1620361808
  7. 10.1016/0899-8248(91)90006-G, IMPACT Comput. Sci. Eng. 3 (1991), 181–191. (1991) MR1141298DOI10.1016/0899-8248(91)90006-G
  8. Numerische Behandlung von Differentialgleichungen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951. (1951) Zbl0054.05101MR0043563
  9. 10.1016/S0377-0427(99)00229-0, J.  Comput. Appl. Math. 112 (1999), 21–27. (1999) Zbl0954.65021MR1728449DOI10.1016/S0377-0427(99)00229-0
  10. 10.1016/0377-0427(93)90027-9, J.  Comput. Appl. Math. 48 (1993), 309–326. (1993) MR1252544DOI10.1016/0377-0427(93)90027-9
  11. 10.1016/0898-1221(89)90148-X, Comput. Math. Appl. 17 (1989), 59–71. (1989) Zbl0706.51019MR0994189DOI10.1016/0898-1221(89)90148-X
  12. Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math., Vol.  1341, Springer-Verlag, Berlin, 1988. (1988) MR0961439
  13. 10.1016/0377-0427(92)90008-L, J.  Comput. Appl. Math. 44 (1992), 131–165. (1992) MR1197680DOI10.1016/0377-0427(92)90008-L
  14. Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Vol.  3, Pitman (Advanced Publishing Program), London-San Francisco-Melbourne, 1978. (1978) MR0519677
  15. Some remarks on finite element analysis of time-dependent field problems, Theory Pract. Finite Elem. Struct. Analysis, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. (1973) Zbl0373.65047
  16. The h - p version of the finite element method for solving boundary value problems in polyhedral domains, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167, M.  Costabel, M.  Dauge, and C.  Nicaise (eds.), Marcel Dekker, New York, 1995, pp. 101–120. (1995) Zbl0855.65114MR1301344
  17. 10.1016/0045-7825(86)90059-9, Comput. Methods Appl. Mech. Eng. 55 (1986), 339–348. (1986) Zbl0572.65008MR0844909DOI10.1016/0045-7825(86)90059-9
  18. 10.1137/S003614290037040X, SIAM J.  Numer. Anal. 39 (2001), 724–733. (2001) MR1860255DOI10.1137/S003614290037040X
  19. 10.1016/S0893-9659(03)90101-7, Appl. Math. Lett. 16 (2003), 1101–1104. (2003) MR2013079DOI10.1016/S0893-9659(03)90101-7
  20. 10.1016/0377-0427(94)90034-5, J.  Comput. Appl. Math. 55 (1994), 275–288. (1994) MR1329875DOI10.1016/0377-0427(94)90034-5
  21. 10.1002/zamm.200310054, Z.  Angew. Math. Mech. 83 (2003), 559–563. (2003) MR1994036DOI10.1002/zamm.200310054
  22. On diagonal dominance of stiffness matrices in  3D, East-West J.  Numer. Math. 3 (1995), 59–69. (1995) MR1331484
  23. 10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T, Numer. Methods Partial Differ. Equations 13 (1997), 201–214. (1997) MR1436615DOI10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T
  24. 10.1137/0916014, SIAM J.  Sci. Comput. 16 (1995), 210–227. (1995) Zbl0816.65090MR1311687DOI10.1137/0916014
  25. 10.1002/cnm.546, Commun. Numer. Methods Eng. 19 (2003), 13–23. (2003) Zbl1021.65052MR1952014DOI10.1002/cnm.546
  26. 10.1137/S1064827501398578, SIAM J.  Sci. Comput. 24 (2003), 1328–1355. (2003) Zbl1061.65116MR1976219DOI10.1137/S1064827501398578
  27. 10.1016/S0168-9274(99)00022-7, Appl. Numer. Math. 32 (2000), 195–218. (2000) MR1734507DOI10.1016/S0168-9274(99)00022-7
  28. 10.1002/num.1690090309, Numer. Methods Partial Differ. Equations 9 (1993), 323–337. (1993) MR1216118DOI10.1002/num.1690090309
  29. Matrix iterative analysis, Prentice-Hall, New Jersey, 1962. (1962) MR0158502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.