Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners
Larisa Beilina; Sergey Korotov; Michal Křížek
Applications of Mathematics (2005)
- Volume: 50, Issue: 6, page 569-581
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBeilina, Larisa, Korotov, Sergey, and Křížek, Michal. "Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners." Applications of Mathematics 50.6 (2005): 569-581. <http://eudml.org/doc/33239>.
@article{Beilina2005,
abstract = {Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.},
author = {Beilina, Larisa, Korotov, Sergey, Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction; partial differential equations; finite element method; path tetrahedron},
language = {eng},
number = {6},
pages = {569-581},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners},
url = {http://eudml.org/doc/33239},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Beilina, Larisa
AU - Korotov, Sergey
AU - Křížek, Michal
TI - Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 6
SP - 569
EP - 581
AB - Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.
LA - eng
KW - partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction; partial differential equations; finite element method; path tetrahedron
UR - http://eudml.org/doc/33239
ER -
References
top- Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numer. Math, B. G. Teubner, Leipzig, 1999. (1999) MR1716824
- 10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8, Commun. Numer. Methods Eng. 12 (1996), 373–381. (1996) DOI10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8
- 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R, Math. Methods Appl. Sci. 21 (1998), 519–549. (1998) MR1615426DOI10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R
- Finite Element Solution of Boundary Value Problems. Theory and Computation, Academic Press, Orlando, 1984. (1984) MR0758437
- Dihedral bounds for mesh generation in high dimensions, Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), SIAM, Philadelphia, 1995, pp. 189–196. (1995) MR1321850
- 10.1002/nme.1620361808, Int. J. Numer. Methods Eng. 36 (1993), 3187–3203. (1993) MR1236370DOI10.1002/nme.1620361808
- 10.1016/0899-8248(91)90006-G, IMPACT Comput. Sci. Eng. 3 (1991), 181–191. (1991) MR1141298DOI10.1016/0899-8248(91)90006-G
- Numerische Behandlung von Differentialgleichungen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951. (1951) Zbl0054.05101MR0043563
- 10.1016/S0377-0427(99)00229-0, J. Comput. Appl. Math. 112 (1999), 21–27. (1999) Zbl0954.65021MR1728449DOI10.1016/S0377-0427(99)00229-0
- 10.1016/0377-0427(93)90027-9, J. Comput. Appl. Math. 48 (1993), 309–326. (1993) MR1252544DOI10.1016/0377-0427(93)90027-9
- 10.1016/0898-1221(89)90148-X, Comput. Math. Appl. 17 (1989), 59–71. (1989) Zbl0706.51019MR0994189DOI10.1016/0898-1221(89)90148-X
- Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math., Vol. 1341, Springer-Verlag, Berlin, 1988. (1988) MR0961439
- 10.1016/0377-0427(92)90008-L, J. Comput. Appl. Math. 44 (1992), 131–165. (1992) MR1197680DOI10.1016/0377-0427(92)90008-L
- Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Vol. 3, Pitman (Advanced Publishing Program), London-San Francisco-Melbourne, 1978. (1978) MR0519677
- Some remarks on finite element analysis of time-dependent field problems, Theory Pract. Finite Elem. Struct. Analysis, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. (1973) Zbl0373.65047
- The - version of the finite element method for solving boundary value problems in polyhedral domains, Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167, M. Costabel, M. Dauge, and C. Nicaise (eds.), Marcel Dekker, New York, 1995, pp. 101–120. (1995) Zbl0855.65114MR1301344
- 10.1016/0045-7825(86)90059-9, Comput. Methods Appl. Mech. Eng. 55 (1986), 339–348. (1986) Zbl0572.65008MR0844909DOI10.1016/0045-7825(86)90059-9
- 10.1137/S003614290037040X, SIAM J. Numer. Anal. 39 (2001), 724–733. (2001) MR1860255DOI10.1137/S003614290037040X
- 10.1016/S0893-9659(03)90101-7, Appl. Math. Lett. 16 (2003), 1101–1104. (2003) MR2013079DOI10.1016/S0893-9659(03)90101-7
- 10.1016/0377-0427(94)90034-5, J. Comput. Appl. Math. 55 (1994), 275–288. (1994) MR1329875DOI10.1016/0377-0427(94)90034-5
- 10.1002/zamm.200310054, Z. Angew. Math. Mech. 83 (2003), 559–563. (2003) MR1994036DOI10.1002/zamm.200310054
- On diagonal dominance of stiffness matrices in 3D, East-West J. Numer. Math. 3 (1995), 59–69. (1995) MR1331484
- 10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T, Numer. Methods Partial Differ. Equations 13 (1997), 201–214. (1997) MR1436615DOI10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T
- 10.1137/0916014, SIAM J. Sci. Comput. 16 (1995), 210–227. (1995) Zbl0816.65090MR1311687DOI10.1137/0916014
- 10.1002/cnm.546, Commun. Numer. Methods Eng. 19 (2003), 13–23. (2003) Zbl1021.65052MR1952014DOI10.1002/cnm.546
- 10.1137/S1064827501398578, SIAM J. Sci. Comput. 24 (2003), 1328–1355. (2003) Zbl1061.65116MR1976219DOI10.1137/S1064827501398578
- 10.1016/S0168-9274(99)00022-7, Appl. Numer. Math. 32 (2000), 195–218. (2000) MR1734507DOI10.1016/S0168-9274(99)00022-7
- 10.1002/num.1690090309, Numer. Methods Partial Differ. Equations 9 (1993), 323–337. (1993) MR1216118DOI10.1002/num.1690090309
- Matrix iterative analysis, Prentice-Hall, New Jersey, 1962. (1962) MR0158502
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.