Uncertain input data problems and the worst scenario method

Ivan Hlaváček

Applications of Mathematics (2007)

  • Volume: 52, Issue: 3, page 187-196
  • ISSN: 0862-7940

Abstract

top
An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.

How to cite

top

Hlaváček, Ivan. "Uncertain input data problems and the worst scenario method." Applications of Mathematics 52.3 (2007): 187-196. <http://eudml.org/doc/33284>.

@article{Hlaváček2007,
abstract = {An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.},
author = {Hlaváček, Ivan},
journal = {Applications of Mathematics},
keywords = {uncertain input data; the worst-case approach; fuzzy sets; uncertain input data; worst-case approach; fuzzy sets},
language = {eng},
number = {3},
pages = {187-196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uncertain input data problems and the worst scenario method},
url = {http://eudml.org/doc/33284},
volume = {52},
year = {2007},
}

TY - JOUR
AU - Hlaváček, Ivan
TI - Uncertain input data problems and the worst scenario method
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 187
EP - 196
AB - An introduction to the worst scenario method is given. We start with an example and a general abstract scheme. An analysis of the method both on the continuous and approximate levels is discussed. We show a possible incorporation of the method into the fuzzy set theory. Finally, we present a survey of applications published during the last decade.
LA - eng
KW - uncertain input data; the worst-case approach; fuzzy sets; uncertain input data; worst-case approach; fuzzy sets
UR - http://eudml.org/doc/33284
ER -

References

top
  1. 10.1007/s00211-005-0601-x, Numer. Math. 101 (2005), 185–219. (2005) MR2195342DOI10.1007/s00211-005-0601-x
  2. Information-Gap Decision Theory: Decisions Under Severe Uncertainty, Academic Press, San Diego, 2001. (2001) Zbl0985.91013MR1856675
  3. Convex Models of Uncertainties in Applied Mechanics, Elsevier, Amsterdam, 1990. (1990) 
  4. What are the random and fuzzy sets and how to use them for uncertainty modeling in engineering systems?, In: CISM Courses and Lectures No. 388, I. Elishakoff (ed.), Springer-Verlag, Wien, 1999. (1999) 
  5. 10.1007/BF02088988, Ingenieur-Archiv 11 (1940), 461–469. (1940) DOI10.1007/BF02088988
  6. 10.1006/jmaa.1998.6364, J.  Math. Anal. Appl. 234 (1999), 514–528. (1999) Zbl0944.35027MR1689404DOI10.1006/jmaa.1998.6364
  7. 10.1016/S0362-546X(99)00274-6, Nonlinear Anal., Theory Methods Appl. 44 (2001), 375–388. (2001) Zbl1002.35041MR1817101DOI10.1016/S0362-546X(99)00274-6
  8. 10.1023/B:APOM.0000024488.86492.fb, Appl. Math. 48 (2003), 487–496. (2003) Zbl1099.90081MR2025958DOI10.1023/B:APOM.0000024488.86492.fb
  9. Isotope selective nondispersive infrared spectrometry can compete with isotope ratio mass spectrometry in cumulative 13 CO 2 breath tests: Assessment of accuracy, Klin. Biochem. Metab. 13 (2005), 92–97. (2005) 
  10. Design Sensitivity Analysis of Structural Systems, Academic Press, Orlando, 1986. (1986) MR0860040
  11. Reliable solution of problems in the deformation theory of plasticity with respect to uncertain material function, Appl. Math. 41 (1996), 447–466. (1996) MR1415251
  12. 10.1016/S0362-546X(96)00236-2, Nonlin. Anal., Theory Methods Appl. 30 (1997), 3879–3890. (1997) MR1602891DOI10.1016/S0362-546X(96)00236-2
  13. 10.1006/jmaa.1997.5518, J.  Math. Anal. Appl. 212 (1997), 452–466. (1997) MR1464890DOI10.1006/jmaa.1997.5518
  14. 10.1002/(SICI)1521-4001(199905)79:5<291::AID-ZAMM291>3.0.CO;2-N, ZAMM, Z.  Angew. Math. Mech. 79 (1999), 291–301. (1999) MR1695286DOI10.1002/(SICI)1521-4001(199905)79:5<291::AID-ZAMM291>3.0.CO;2-N
  15. 10.1023/A:1023228608356, Appl. Math. 43 (1998), 223–237. (1998) MR1620616DOI10.1023/A:1023228608356
  16. 10.1002/(SICI)1099-1506(199909)6:6<411::AID-NLA178>3.0.CO;2-W, Numer. Linear Algebra Appl. 6 (1999), 411–434. (1999) MR1731015DOI10.1002/(SICI)1099-1506(199909)6:6<411::AID-NLA178>3.0.CO;2-W
  17. 10.1142/S0218202501001148, Math. Models Methods Appl. Sci. 11 (2001), 855–865. (2001) Zbl1037.74028MR1842230DOI10.1142/S0218202501001148
  18. Reliable solution of a perfect plastic problem with uncertain stress-strain law and yield function, SIAM J.  Numer. Anal. 39 (2001), 1539–1555. (2001) Zbl1014.74015MR1885706
  19. 10.1002/1521-4001(200210)82:10<671::AID-ZAMM671>3.0.CO;2-2, ZAMM, Z.  Angew. Math. Mech. 82 (2002), 671–684. (2002) Zbl1099.74505MR1903014DOI10.1002/1521-4001(200210)82:10<671::AID-ZAMM671>3.0.CO;2-2
  20. 10.1142/S0218202502002082, Math. Models Methods Appl. Sci. 12 (2002), 1337–1357. (2002) MR1927028DOI10.1142/S0218202502002082
  21. 10.1023/A:1021702816894, Appl. Math. 47 (2002), 25–44. (2002) MR1876490DOI10.1023/A:1021702816894
  22. 10.1093/imamat/68.2.185, IMA J.  Appl. Math. 68 (2003), 185–204. (2003) Zbl1037.74018MR1968311DOI10.1093/imamat/68.2.185
  23. Plate bending problems with uncertain input data. I.  Classical problems, , Submitted. 
  24. 10.1016/S0045-7825(99)00452-1, Comput. Methods Appl. Mech. Eng. 190 (2000), 903–918. (2000) MR1797723DOI10.1016/S0045-7825(99)00452-1
  25. Uncertain Input Data Problems and the Worst Scenario Method, Elsevier, Amsterdam, 2004. (2004) MR2285091
  26. 10.4064/am28-4-3, Appl. Math. (Warsaw) 28 (2001), 407–426. (2001) MR1873903DOI10.4064/am28-4-3
  27. 10.1006/jmaa.1994.1192, J. Math. Anal. Appl. 184 (1994), 168–189. (1994) MR1275952DOI10.1006/jmaa.1994.1192
  28. 10.1142/S0218202505000364, Applications to shallow shells. Math. Models Methods Appl. Sci. 15 (2005), 273–299. (2005) MR2120000DOI10.1142/S0218202505000364
  29. 10.1016/j.matcom.2004.08.001, Math. Comput. Simul. 67 (2005), 559–580. (2005) MR2111780DOI10.1016/j.matcom.2004.08.001
  30. 10.1081/NFA-120023866, Numer. Funct. Anal. Optimization 24 (2003), 509–530. (2003) Zbl1049.49007MR1995999DOI10.1081/NFA-120023866
  31. 10.1016/j.cma.2005.02.010, Comput. Methods Appl. Mech. Eng. 195 (2006), 763–774. (2006) MR2183622DOI10.1016/j.cma.2005.02.010
  32. An elliptic problem with a nonlinear Newton boundary condition and a double uncertainty, PhD. Thesis, Palacký University, Olomouc, 2004. (Czech) (2004) 
  33. Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics, Birkhäuser-Verlag, Berlin, 2000. (2000) Zbl0947.49001MR1774123
  34. 10.1023/B:APOM.0000024480.06960.ea, Appl. Math. 48 (2003), 321–351. (2003) Zbl1099.35054MR2008888DOI10.1023/B:APOM.0000024480.06960.ea
  35. 10.1007/s10492-006-0015-9, Appl. Math. 51 (2006), 263–294. (2006) Zbl1164.35317MR2228666DOI10.1007/s10492-006-0015-9
  36. Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter, Berlin, 1997. (1997) MR1458067
  37. Reliable solutions of a thermoelastic beam model with uncertain coefficients, PhD. Thesis, Palacký University, Olomouc, 2003. (Czech) (2003) 
  38. Fuzzy Set Theory—and Its Applications, Kluwer Academic Publishers, Boston, 2001. (2001) MR1882395

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.