Pseudo-amenability of Brandt semigroup algebras
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 3, page 413-419
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topSadr, Maysam Maysami. "Pseudo-amenability of Brandt semigroup algebras." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 413-419. <http://eudml.org/doc/33324>.
@article{Sadr2009,
abstract = {In this paper it is shown that for a Brandt semigroup $S$ over a group $G$ with an arbitrary index set $I$, if $G$ is amenable, then the Banach semigroup algebra $\ell ^1(S)$ is pseudo-amenable.},
author = {Sadr, Maysam Maysami},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudo-amenability; Brandt semigroup algebra; amenable group; pseudo-amenability; Brandt semigroup algebra; amenable group},
language = {eng},
number = {3},
pages = {413-419},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pseudo-amenability of Brandt semigroup algebras},
url = {http://eudml.org/doc/33324},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Sadr, Maysam Maysami
TI - Pseudo-amenability of Brandt semigroup algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 413
EP - 419
AB - In this paper it is shown that for a Brandt semigroup $S$ over a group $G$ with an arbitrary index set $I$, if $G$ is amenable, then the Banach semigroup algebra $\ell ^1(S)$ is pseudo-amenable.
LA - eng
KW - pseudo-amenability; Brandt semigroup algebra; amenable group; pseudo-amenability; Brandt semigroup algebra; amenable group
UR - http://eudml.org/doc/33324
ER -
References
top- Duncan J., Namioka I., Amenability of inverse semigroups and their semigroup algebras, Proc. Royal Soc. Edinburgh Sect. A 80 (1978), 309--321. Zbl0393.22004MR0516230
- Ghahramani F., Loy R.J., 10.1016/S0022-1236(03)00214-3, J. Funct. Anal. 208 (2004), 229--260. MR2034298DOI10.1016/S0022-1236(03)00214-3
- Ghahramani F., Loy R.J., Zhang Y., 10.1016/j.jfa.2007.12.011, J. Funct. Anal. 254 (2008), 1776--1810. Zbl1146.46023MR2397875DOI10.1016/j.jfa.2007.12.011
- Ghahramani F., Zhang Y., 10.1017/S0305004106009649, Math. Proc. Cambridge Philos. Soc. 142 (2007), 111--123. Zbl1118.46046MR2296395DOI10.1017/S0305004106009649
- Howie J.M., An Introduction to Semigroup Theory, Academic Press, London, 1976. Zbl0355.20056MR0466355
- Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972), pp 96. Zbl0306.46065MR0374934
- Lashkarizadeh Bami M., Samea H., 10.1007/s00233-005-0516-y, Semigroup Forum 71 (2005), 312--322. Zbl1086.43002MR2184061DOI10.1007/s00233-005-0516-y
- Runde V., 10.1007/b82937, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. Zbl0999.46022MR1874893DOI10.1007/b82937
- Sadr M.M., Pourabbas A., Approximate amenability of Banach category algebras with application to semigroup algebras, Semigroup Forum(to appear). MR2534223
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.