Pseudo-amenability of Brandt semigroup algebras

Maysam Maysami Sadr

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 3, page 413-419
  • ISSN: 0010-2628

Abstract

top
In this paper it is shown that for a Brandt semigroup S over a group G with an arbitrary index set I , if G is amenable, then the Banach semigroup algebra 1 ( S ) is pseudo-amenable.

How to cite

top

Sadr, Maysam Maysami. "Pseudo-amenability of Brandt semigroup algebras." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 413-419. <http://eudml.org/doc/33324>.

@article{Sadr2009,
abstract = {In this paper it is shown that for a Brandt semigroup $S$ over a group $G$ with an arbitrary index set $I$, if $G$ is amenable, then the Banach semigroup algebra $\ell ^1(S)$ is pseudo-amenable.},
author = {Sadr, Maysam Maysami},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudo-amenability; Brandt semigroup algebra; amenable group; pseudo-amenability; Brandt semigroup algebra; amenable group},
language = {eng},
number = {3},
pages = {413-419},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pseudo-amenability of Brandt semigroup algebras},
url = {http://eudml.org/doc/33324},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Sadr, Maysam Maysami
TI - Pseudo-amenability of Brandt semigroup algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 413
EP - 419
AB - In this paper it is shown that for a Brandt semigroup $S$ over a group $G$ with an arbitrary index set $I$, if $G$ is amenable, then the Banach semigroup algebra $\ell ^1(S)$ is pseudo-amenable.
LA - eng
KW - pseudo-amenability; Brandt semigroup algebra; amenable group; pseudo-amenability; Brandt semigroup algebra; amenable group
UR - http://eudml.org/doc/33324
ER -

References

top
  1. Duncan J., Namioka I., Amenability of inverse semigroups and their semigroup algebras, Proc. Royal Soc. Edinburgh Sect. A 80 (1978), 309--321. Zbl0393.22004MR0516230
  2. Ghahramani F., Loy R.J., 10.1016/S0022-1236(03)00214-3, J. Funct. Anal. 208 (2004), 229--260. MR2034298DOI10.1016/S0022-1236(03)00214-3
  3. Ghahramani F., Loy R.J., Zhang Y., 10.1016/j.jfa.2007.12.011, J. Funct. Anal. 254 (2008), 1776--1810. Zbl1146.46023MR2397875DOI10.1016/j.jfa.2007.12.011
  4. Ghahramani F., Zhang Y., 10.1017/S0305004106009649, Math. Proc. Cambridge Philos. Soc. 142 (2007), 111--123. Zbl1118.46046MR2296395DOI10.1017/S0305004106009649
  5. Howie J.M., An Introduction to Semigroup Theory, Academic Press, London, 1976. Zbl0355.20056MR0466355
  6. Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972), pp 96. Zbl0306.46065MR0374934
  7. Lashkarizadeh Bami M., Samea H., 10.1007/s00233-005-0516-y, Semigroup Forum 71 (2005), 312--322. Zbl1086.43002MR2184061DOI10.1007/s00233-005-0516-y
  8. Runde V., 10.1007/b82937, Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. Zbl0999.46022MR1874893DOI10.1007/b82937
  9. Sadr M.M., Pourabbas A., Approximate amenability of Banach category algebras with application to semigroup algebras, Semigroup Forum(to appear). MR2534223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.