Spectrum of randomly sampled multivariate ARMA models

Amina Kadi

Kybernetika (1998)

  • Volume: 34, Issue: 3, page [317]-333
  • ISSN: 0023-5954

Abstract

top
The paper is devoted to the spectrum of multivariate randomly sampled autoregressive moving-average (ARMA) models. We determine precisely the spectrum numerator coefficients of the randomly sampled ARMA models. We give results when the non-zero poles of the initial ARMA model are simple. We first prove the results when the probability generating function of the random sampling law is injective, then we precise the results when it is not injective.

How to cite

top

Kadi, Amina. "Spectrum of randomly sampled multivariate ARMA models." Kybernetika 34.3 (1998): [317]-333. <http://eudml.org/doc/33357>.

@article{Kadi1998,
abstract = {The paper is devoted to the spectrum of multivariate randomly sampled autoregressive moving-average (ARMA) models. We determine precisely the spectrum numerator coefficients of the randomly sampled ARMA models. We give results when the non-zero poles of the initial ARMA model are simple. We first prove the results when the probability generating function of the random sampling law is injective, then we precise the results when it is not injective.},
author = {Kadi, Amina},
journal = {Kybernetika},
keywords = {ARMA model; spectral analysis; ARMA model; spectral analysis},
language = {eng},
number = {3},
pages = {[317]-333},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Spectrum of randomly sampled multivariate ARMA models},
url = {http://eudml.org/doc/33357},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Kadi, Amina
TI - Spectrum of randomly sampled multivariate ARMA models
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 3
SP - [317]
EP - 333
AB - The paper is devoted to the spectrum of multivariate randomly sampled autoregressive moving-average (ARMA) models. We determine precisely the spectrum numerator coefficients of the randomly sampled ARMA models. We give results when the non-zero poles of the initial ARMA model are simple. We first prove the results when the probability generating function of the random sampling law is injective, then we precise the results when it is not injective.
LA - eng
KW - ARMA model; spectral analysis; ARMA model; spectral analysis
UR - http://eudml.org/doc/33357
ER -

References

top
  1. Bloomfield P., Spectral analysis with randomly missing observations, J. Roy. Statist. Soc. B 32 (1970), 369–380 (1970) Zbl0218.62111MR0287653
  2. Brillinger D. R., Statistical inference for irregularly observed processes, In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 MR0775893
  3. Dunsmuir W., Estimation for stationary time series when data are irregularly spaced or missing, In: Applied Time Series II (D. F. Findley, ed.), Academic Press, New York 1981 Zbl0482.62081
  4. Dunsmuir W., 10.1016/0304-4149(83)90005-4, Stochastic Process. Appl. 14 (1983), 279–295 (1983) Zbl0502.62073MR0688611DOI10.1016/0304-4149(83)90005-4
  5. Dunsmuir W., Large sample properties of estimation in time series observed at unequally spaced times, In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 Zbl0566.62078MR0775894
  6. Dunsmuir W., Robinson P. M., 10.2307/1426471, Adv. in Appl. Probab. 13 (1981), 126–146 (1981) Zbl0461.62075MR0595891DOI10.2307/1426471
  7. Dunsmuir W., Robinson P. M., Asymptotic theory for time series containing missing and amplitude modulated observations, Sankhyā Ser. A 43 (1981), Pt. 3, 260–281 (1981) Zbl0531.62079MR0665872
  8. Dunsmuir W., Robinson P. M., 10.1080/01621459.1981.10477687, J. Amer. Statist. Assoc. 76 (1981), 375, 560–568 (1981) Zbl0471.62089DOI10.1080/01621459.1981.10477687
  9. Hannan E. J., Multiple Time Series, Wiley, New York 1970 Zbl0279.62025MR0279952
  10. Kadi A., Agrégation et échantillonnage aléatoire de séries temporelles, Thèse, Université de Paris–Sud 1994 
  11. Kadi A., Oppenheim G., Viano M. C., 10.1111/j.1467-9892.1994.tb00175.x, J. Time Ser. Anal. 15 (1994), 1, 31–43 (1994) MR1256855DOI10.1111/j.1467-9892.1994.tb00175.x
  12. Kadi A., Mokkadem A., 10.1016/0304-4149(94)00009-3, Stochastic Process. Appl. 54 (1994), 1, 121–137 (1994) MR1302698DOI10.1016/0304-4149(94)00009-3
  13. Marshall R. J., 10.1093/biomet/67.3.567, Biometrika 67 (1980), 3, 567–570 (1980) Zbl0442.62071MR0601092DOI10.1093/biomet/67.3.567
  14. Parzen E., On spectral analysis with missing observations and amplitude modulation, Sankhyā, Ser. A 25 (1963), 383–392 (1963) Zbl0136.40701MR0172435
  15. Robinson P. M., Continuous model fitting from discrete data, In: Directions in Time Series (D. R. Brillinger and G. C. Tiao, eds.), Institute of Mathematical Statistics 1980, pp. 263–278 (1980) MR0624656
  16. Robinson P. M., Multiple time series analysis of irregularly spaced data, In: Proceeding of a Symposium Time Series Analysis of Irregularly Observed Data (E. Parzen, ed., Lecture Notes in Statistics 25), Springer Verlag, Berlin 1983 Zbl0556.62063MR0775903
  17. Shapiro H. S., Silverman R. A., 10.1137/0108013, J. Soc. Indust. Appl. Math. 8 (1960), 2, 225–248 (1960) Zbl0121.14204MR0121948DOI10.1137/0108013
  18. Toloi C. M. C., Morettin P. A., 10.1111/j.1467-9892.1993.tb00154.x, J. Time Ser. Anal. 14 (1993), 4, 409–432 (1993) Zbl0787.62097MR1234583DOI10.1111/j.1467-9892.1993.tb00154.x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.