Controllability of functional differential systems of Sobolev type in Banach spaces

Krishnan Balachandran; Jerald P. Dauer

Kybernetika (1998)

  • Volume: 34, Issue: 3, page [349]-357
  • ISSN: 0023-5954

Abstract

top
Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results.

How to cite

top

Balachandran, Krishnan, and Dauer, Jerald P.. "Controllability of functional differential systems of Sobolev type in Banach spaces." Kybernetika 34.3 (1998): [349]-357. <http://eudml.org/doc/33359>.

@article{Balachandran1998,
abstract = {Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results.},
author = {Balachandran, Krishnan, Dauer, Jerald P.},
journal = {Kybernetika},
keywords = {controllability; Banach space; differential system of Sobolev type; controllability; Banach space; differential system of Sobolev type},
language = {eng},
number = {3},
pages = {[349]-357},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllability of functional differential systems of Sobolev type in Banach spaces},
url = {http://eudml.org/doc/33359},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Balachandran, Krishnan
AU - Dauer, Jerald P.
TI - Controllability of functional differential systems of Sobolev type in Banach spaces
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 3
SP - [349]
EP - 357
AB - Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results.
LA - eng
KW - controllability; Banach space; differential system of Sobolev type; controllability; Banach space; differential system of Sobolev type
UR - http://eudml.org/doc/33359
ER -

References

top
  1. Balachandran K., Balasubramaniam P., Dauer J. P., 10.1007/BF02191736, J. Optim. Theory Appl. 84 (1995), 83–91 (1995) Zbl0821.93010MR1312963DOI10.1007/BF02191736
  2. Balachandran K., Balasubramaniam P., Dauer J. P., Controllability of quasilinear delay systems in Banach spaces, Optimal Control Appl. Methods 16 (1995), 283–290 (1995) MR1349807
  3. Balachandran K., Balasubramaniam P., Dauer J. P., 10.1007/BF02192022, J. Optim. Theory Appl. 88 (1996), 61–75 (1996) MR1367033DOI10.1007/BF02192022
  4. Brill H., 10.1016/0022-0396(77)90009-2, J. Differential Equations 24 (1977), 412–425 (1977) MR0466818DOI10.1016/0022-0396(77)90009-2
  5. Chuckwu E. N., Lenhart S. M., 10.1007/BF00940064, J. Optim. Theory Appl. 68 (1991), 437–462 (1991) MR1097312DOI10.1007/BF00940064
  6. Curtain R. F., Prichard A. J., Infinite Dimensional Linear Systems Theory, Springer–Verlag, New York 1978 MR0516812
  7. Kartsatos A. C., Parrott M. E., On a class of nonlinear functional pseudoparabolic problems, Funkcial. Ekvac. 25 (1982), 207–221 (1982) Zbl0507.34064MR0694913
  8. Kwun Y. C., Park J. Y., Ryu J. W., Approximate controllability and controllability for delay Volterra systems, Bull. Korean Math. Soc. 28 (1991), 131–145 (1991) MR1127732
  9. Lagnese J., 10.1137/0503013, SIAM J. Math. Anal. 3 (1972) 105–119 (1972) MR0333422DOI10.1137/0503013
  10. Lasiecka I., Triggiani R., 10.1007/BF01442394, Appl. Math. Optim. 23 (1991), 109–154 (1991) MR1086465DOI10.1007/BF01442394
  11. Lightbourne J. H., Rankin S. M., 10.1016/0022-247X(83)90178-6, J. Math. Anal. Appl. 93 (1983), 328–337 (1983) Zbl0519.35074MR0700149DOI10.1016/0022-247X(83)90178-6
  12. Nakagiri S., Yamamoto R., 10.1080/00207178908559721, Internat. J. Control 49 (1989), 1489–1504 (1989) Zbl0676.93029MR0998053DOI10.1080/00207178908559721
  13. Naito K., 10.1007/BF00938799, J. Optim. Theory Appl. 6 (1989), 57–65 (1989) Zbl0632.93007MR0981945DOI10.1007/BF00938799
  14. Naito K., 10.1016/0362-546X(92)90050-O, Nonlinear Anal. 18 (1992), 99–108 (1992) Zbl0768.93011MR1138645DOI10.1016/0362-546X(92)90050-O
  15. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer–Verlag, New York 1983 Zbl0516.47023MR0710486
  16. Showalter R. E., 10.1016/0022-247X(75)90047-5, J. Math. Anal. Appl. 50 (1975), 183–190 (1975) Zbl0296.35047MR0361479DOI10.1016/0022-247X(75)90047-5
  17. Triggiani R., 10.1137/0313028, SIAM J. Control 13 (1975), 462–491 (1975) MR0394386DOI10.1137/0313028
  18. Ward J. R., 10.1016/0022-247X(79)90067-2, J. Math. Anal. Appl. 70 (1979), 589–598 (1979) MR0543596DOI10.1016/0022-247X(79)90067-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.