Controllability of functional differential systems of Sobolev type in Banach spaces
Krishnan Balachandran; Jerald P. Dauer
Kybernetika (1998)
- Volume: 34, Issue: 3, page [349]-357
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBalachandran, Krishnan, and Dauer, Jerald P.. "Controllability of functional differential systems of Sobolev type in Banach spaces." Kybernetika 34.3 (1998): [349]-357. <http://eudml.org/doc/33359>.
@article{Balachandran1998,
abstract = {Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results.},
author = {Balachandran, Krishnan, Dauer, Jerald P.},
journal = {Kybernetika},
keywords = {controllability; Banach space; differential system of Sobolev type; controllability; Banach space; differential system of Sobolev type},
language = {eng},
number = {3},
pages = {[349]-357},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllability of functional differential systems of Sobolev type in Banach spaces},
url = {http://eudml.org/doc/33359},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Balachandran, Krishnan
AU - Dauer, Jerald P.
TI - Controllability of functional differential systems of Sobolev type in Banach spaces
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 3
SP - [349]
EP - 357
AB - Sufficient conditions for controllability of partial functional differential systems of Sobolev type in Banach spaces are established. The results are obtained using compact semigroups and the Schauder fixed point theorem. An example is provided to illustrate the results.
LA - eng
KW - controllability; Banach space; differential system of Sobolev type; controllability; Banach space; differential system of Sobolev type
UR - http://eudml.org/doc/33359
ER -
References
top- Balachandran K., Balasubramaniam P., Dauer J. P., 10.1007/BF02191736, J. Optim. Theory Appl. 84 (1995), 83–91 (1995) Zbl0821.93010MR1312963DOI10.1007/BF02191736
- Balachandran K., Balasubramaniam P., Dauer J. P., Controllability of quasilinear delay systems in Banach spaces, Optimal Control Appl. Methods 16 (1995), 283–290 (1995) MR1349807
- Balachandran K., Balasubramaniam P., Dauer J. P., 10.1007/BF02192022, J. Optim. Theory Appl. 88 (1996), 61–75 (1996) MR1367033DOI10.1007/BF02192022
- Brill H., 10.1016/0022-0396(77)90009-2, J. Differential Equations 24 (1977), 412–425 (1977) MR0466818DOI10.1016/0022-0396(77)90009-2
- Chuckwu E. N., Lenhart S. M., 10.1007/BF00940064, J. Optim. Theory Appl. 68 (1991), 437–462 (1991) MR1097312DOI10.1007/BF00940064
- Curtain R. F., Prichard A. J., Infinite Dimensional Linear Systems Theory, Springer–Verlag, New York 1978 MR0516812
- Kartsatos A. C., Parrott M. E., On a class of nonlinear functional pseudoparabolic problems, Funkcial. Ekvac. 25 (1982), 207–221 (1982) Zbl0507.34064MR0694913
- Kwun Y. C., Park J. Y., Ryu J. W., Approximate controllability and controllability for delay Volterra systems, Bull. Korean Math. Soc. 28 (1991), 131–145 (1991) MR1127732
- Lagnese J., 10.1137/0503013, SIAM J. Math. Anal. 3 (1972) 105–119 (1972) MR0333422DOI10.1137/0503013
- Lasiecka I., Triggiani R., 10.1007/BF01442394, Appl. Math. Optim. 23 (1991), 109–154 (1991) MR1086465DOI10.1007/BF01442394
- Lightbourne J. H., Rankin S. M., 10.1016/0022-247X(83)90178-6, J. Math. Anal. Appl. 93 (1983), 328–337 (1983) Zbl0519.35074MR0700149DOI10.1016/0022-247X(83)90178-6
- Nakagiri S., Yamamoto R., 10.1080/00207178908559721, Internat. J. Control 49 (1989), 1489–1504 (1989) Zbl0676.93029MR0998053DOI10.1080/00207178908559721
- Naito K., 10.1007/BF00938799, J. Optim. Theory Appl. 6 (1989), 57–65 (1989) Zbl0632.93007MR0981945DOI10.1007/BF00938799
- Naito K., 10.1016/0362-546X(92)90050-O, Nonlinear Anal. 18 (1992), 99–108 (1992) Zbl0768.93011MR1138645DOI10.1016/0362-546X(92)90050-O
- Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer–Verlag, New York 1983 Zbl0516.47023MR0710486
- Showalter R. E., 10.1016/0022-247X(75)90047-5, J. Math. Anal. Appl. 50 (1975), 183–190 (1975) Zbl0296.35047MR0361479DOI10.1016/0022-247X(75)90047-5
- Triggiani R., 10.1137/0313028, SIAM J. Control 13 (1975), 462–491 (1975) MR0394386DOI10.1137/0313028
- Ward J. R., 10.1016/0022-247X(79)90067-2, J. Math. Anal. Appl. 70 (1979), 589–598 (1979) MR0543596DOI10.1016/0022-247X(79)90067-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.