Notes on and robustness tests
Gábor Z. Kovács; Katalin M. Hangos
Kybernetika (1998)
- Volume: 34, Issue: 5, page [565]-578
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKovács, Gábor Z., and Hangos, Katalin M.. "Notes on $\mu $ and $l_1$ robustness tests." Kybernetika 34.5 (1998): [565]-578. <http://eudml.org/doc/33389>.
@article{Kovács1998,
abstract = {An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the $\{\mathcal \{H\}\}_\infty $-norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the $\infty $-norm of a special non-negative matrix derived from $\{\mathcal \{H\}\}_\infty $-norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of $\mu $ and $\ell _1$ robustness tests.},
author = {Kovács, Gábor Z., Hangos, Katalin M.},
journal = {Kybernetika},
keywords = {linear time-invariant MIMO system; robust stability; single input single output input-output channels; MIMO uncertainty; $\{\mathcal \{H\}\}_\infty $-norm; linear time-invariant MIMO system; robust stability; single input single output input-output channels; MIMO uncertainty; -norm},
language = {eng},
number = {5},
pages = {[565]-578},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Notes on $\mu $ and $l_1$ robustness tests},
url = {http://eudml.org/doc/33389},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Kovács, Gábor Z.
AU - Hangos, Katalin M.
TI - Notes on $\mu $ and $l_1$ robustness tests
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 5
SP - [565]
EP - 578
AB - An upper bound for the complex structured singular value related to a linear time-invariant system over all frequencies is given. It is in the form of the spectral radius of the ${\mathcal {H}}_\infty $-norm matrix of SISO input-output channels of the system when uncertainty blocks are SISO. In the case of MIMO uncertainty blocks the upper bound is the $\infty $-norm of a special non-negative matrix derived from ${\mathcal {H}}_\infty $-norms of SISO channels of the system. The upper bound is fit into the inequality relation between the results of $\mu $ and $\ell _1$ robustness tests.
LA - eng
KW - linear time-invariant MIMO system; robust stability; single input single output input-output channels; MIMO uncertainty; ${\mathcal {H}}_\infty $-norm; linear time-invariant MIMO system; robust stability; single input single output input-output channels; MIMO uncertainty; -norm
UR - http://eudml.org/doc/33389
ER -
References
top- Dahleh M. A., Khammash M., 10.1016/0005-1098(93)90173-Q, Automatica 29 (1993), 37–56 (1993) Zbl0772.93028MR1200540DOI10.1016/0005-1098(93)90173-Q
- Dahleh M. A., Diaz–Bobillo I. J., Control of Uncertain Systems, A Linear Programming Approach. Prentice Hall, NJ 1995 Zbl0838.93007
- Doyle J. C., Structured uncertainty in control system design, In: Proc. of 24th Conference on Decision and Control, Ft. Lauderdale FL 1985, pp. 260–265 (1985)
- Fiedler M., Special Matrices and Their Application in Numerical Mathematics, SNTL – Nakladatelství technické literatury, Prague 1981 Zbl0531.65008
- Khammash M. H., Pearson J. B., 10.1109/9.75099, IEEE Trans. Automat. Control 36 (1991), 398–412 (1991) Zbl0754.93063MR1097093DOI10.1109/9.75099
- Khammash M. H., Pearson J. B., 10.1016/0167-6911(93)90059-F, Systems Control Lett. 20 (1993), 179–187 (1993) Zbl0768.93065MR1208518DOI10.1016/0167-6911(93)90059-F
- Khammash M. H., 10.1109/9.186311, IEEE Trans. Automat. Control 38 (1993), 49–57 (1993) Zbl0777.93018MR1201494DOI10.1109/9.186311
- Packard A., Doyle J. C., 10.1016/0005-1098(93)90175-S, Automatica 29 (1993), 71–109 (1993) Zbl0772.93023MR1200542DOI10.1016/0005-1098(93)90175-S
- Tits A. L., Fan M. K. H., 10.1016/0005-1098(95)00035-U, Automatica 31 (1995), 1199–1201 (1995) Zbl0831.93021MR1342128DOI10.1016/0005-1098(95)00035-U
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.