Proto-metrizable fuzzy topological spaces
Kybernetika (1999)
- Volume: 35, Issue: 2, page [209]-213
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLupiañez, Francisco Gallego. "Proto-metrizable fuzzy topological spaces." Kybernetika 35.2 (1999): [209]-213. <http://eudml.org/doc/33422>.
@article{Lupiañez1999,
abstract = {In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.},
author = {Lupiañez, Francisco Gallego},
journal = {Kybernetika},
keywords = {fuzzy topological space; proto-metrizable topological space; fuzzy topological space; proto-metrizable topological space},
language = {eng},
number = {2},
pages = {[209]-213},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Proto-metrizable fuzzy topological spaces},
url = {http://eudml.org/doc/33422},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Lupiañez, Francisco Gallego
TI - Proto-metrizable fuzzy topological spaces
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 2
SP - [209]
EP - 213
AB - In this paper we define for fuzzy topological spaces a notion corresponding to proto-metrizable topological spaces. We obtain some properties of these fuzzy topological spaces, particularly we give relations with non-archimedean, and metrizable fuzzy topological spaces.
LA - eng
KW - fuzzy topological space; proto-metrizable topological space; fuzzy topological space; proto-metrizable topological space
UR - http://eudml.org/doc/33422
ER -
References
top- Ajmal N., Kohli J. K., 10.1016/0165-0114(89)90207-8, Fuzzy Sets and Systems 31 (1989), 369–388 (1989) Zbl0684.54004MR1009267DOI10.1016/0165-0114(89)90207-8
- Bülbül A., Warner M. W., 10.1016/0165-0114(93)90131-Z, Fuzzy Sets and Systems 55 (1993), 187–191 (1993) Zbl0809.54007MR1215139DOI10.1016/0165-0114(93)90131-Z
- Eklund P., Gähler W., Basic notions for fuzzy topology I, Fuzzy Sets and Systems 26 (1988), 333–356 (1988) Zbl0645.54008MR0942329
- El–Monsef M. E. A., Zeyada F. M., El–Deeb S. N., Hanafy I. M., Good extensions of paracompactness, Math. Japon. 37 (1992), 195–200 (1992) Zbl0772.54007MR1148533
- Fuller L. B., 10.2140/pjm.1983.104.55, Pacific J. Math. 104 (1983), 55–75 (1983) Zbl0386.54020MR0683728DOI10.2140/pjm.1983.104.55
- Gruenhage G., Zenor P., Proto metrizable spaces, Houston J. Math. 3 (1977), 47–53 (1977) Zbl0346.54012MR0442895
- Lowen R., 10.1016/0022-247X(78)90052-5, J. Math. Anal. Appl. 64 (1978), 446–454 (1978) Zbl0381.54004MR0497443DOI10.1016/0022-247X(78)90052-5
- Luo M.-K., 10.1016/0022-247X(88)90386-1, J. Math. Anal. Appl. 130 (1988), 55–77 (1988) Zbl0642.54006MR0926828DOI10.1016/0022-247X(88)90386-1
- Lupiáñez F. G., Non–archimedean fuzzy topological spaces, J. Fuzzy Math. 4 (1996), 559–565 (1996) Zbl0943.54007MR1410629
- Martin H. W., 10.1016/0022-247X(80)90170-5, J. Math. Anal. Appl. 78 (1980), 634–639 (1980) Zbl0463.54007MR0601558DOI10.1016/0022-247X(80)90170-5
- Nyikos P., Some surprising base properties in Topology, Studies in topology, In: Proc. Conf. Univ. North Carolina, Charlotte, NC 1974, Academic Press, New York 1975, pp. 427–450 (1974) MR0367940
- Nyikos P., Some surprising base properties in Topology II, In: Set–theoretic Topology, Inst. Medicine and Mathematics, Ohio Univ., Academic Press, New York 1977, pp. 277–305 (1977) Zbl0397.54004MR0442889
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.