Weighted mixed-sensitivity minimization for stable distributed parameter plants under sampled data control

Delano R. Carter; Armando A. Rodriguez

Kybernetika (1999)

  • Volume: 35, Issue: 5, page [527]-554
  • ISSN: 0023-5954

Abstract

top
This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted -style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite- dimensional controllers stabilize the sampled-data controlled distributed parameter plant and are near-optimal. The proof relies on the fact that the control input is appropriately penalized in the optimization. This technique also assumes and exploits the fact that the plant can be approximated uniformly by finite-dimensional systems. Moreover, it is shown how the optimal performance may be estimated to any desired degree of accuracy by solving a single finite-dimensional problem using a suitable finite-dimensional approximant. The constructions given are simple. Finally, it should be noted that no infinite-dimensional spectral factorizations are required. In short, the paper provides a straight forward control design approach for a large class of MIMO distributed parameter systems under sampled-data control.

How to cite

top

Carter, Delano R., and Rodriguez, Armando A.. "Weighted $\mathcal {H}_\infty $ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control." Kybernetika 35.5 (1999): [527]-554. <http://eudml.org/doc/33445>.

@article{Carter1999,
abstract = {This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted $ \{\mathcal \{H\}\}^\infty $-style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite- dimensional controllers stabilize the sampled-data controlled distributed parameter plant and are near-optimal. The proof relies on the fact that the control input is appropriately penalized in the optimization. This technique also assumes and exploits the fact that the plant can be approximated uniformly by finite-dimensional systems. Moreover, it is shown how the optimal performance may be estimated to any desired degree of accuracy by solving a single finite-dimensional problem using a suitable finite-dimensional approximant. The constructions given are simple. Finally, it should be noted that no infinite-dimensional spectral factorizations are required. In short, the paper provides a straight forward control design approach for a large class of MIMO distributed parameter systems under sampled-data control.},
author = {Carter, Delano R., Rodriguez, Armando A.},
journal = {Kybernetika},
keywords = {MIMO; distributed parameter system; sampled-data control; finite-dimensional controllers; finite-dimensional systems; MIMO; distributed parameter system; sampled-data control; finite-dimensional controllers; finite-dimensional systems},
language = {eng},
number = {5},
pages = {[527]-554},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Weighted $\mathcal \{H\}_\infty $ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control},
url = {http://eudml.org/doc/33445},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Carter, Delano R.
AU - Rodriguez, Armando A.
TI - Weighted $\mathcal {H}_\infty $ mixed-sensitivity minimization for stable distributed parameter plants under sampled data control
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 5
SP - [527]
EP - 554
AB - This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted $ {\mathcal {H}}^\infty $-style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite- dimensional controllers stabilize the sampled-data controlled distributed parameter plant and are near-optimal. The proof relies on the fact that the control input is appropriately penalized in the optimization. This technique also assumes and exploits the fact that the plant can be approximated uniformly by finite-dimensional systems. Moreover, it is shown how the optimal performance may be estimated to any desired degree of accuracy by solving a single finite-dimensional problem using a suitable finite-dimensional approximant. The constructions given are simple. Finally, it should be noted that no infinite-dimensional spectral factorizations are required. In short, the paper provides a straight forward control design approach for a large class of MIMO distributed parameter systems under sampled-data control.
LA - eng
KW - MIMO; distributed parameter system; sampled-data control; finite-dimensional controllers; finite-dimensional systems; MIMO; distributed parameter system; sampled-data control; finite-dimensional controllers; finite-dimensional systems
UR - http://eudml.org/doc/33445
ER -

References

top
  1. Bamieh B. A., Pearson J. B., 10.1109/9.126576, IEEE Trans. Automat. Control 37 (1992), 418–435 (1992) MR1153103DOI10.1109/9.126576
  2. Boyd, S .P., Balakrishnan V., Kabamba P., 10.1007/BF02551385, Math. Control Signals Systems 2 (1989), 207–219 (1989) MR0997214DOI10.1007/BF02551385
  3. Callier F. M., Desoer C. A., 10.1109/TCS.1978.1084544, IEEE Trans. Circuits and Systems 25 (1978), 9, 651–662 (1978) Zbl0468.93020MR0510690DOI10.1109/TCS.1978.1084544
  4. Cantoni M. W., Glover K., A design framework for continuous–time systems under sampled–data control, In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 458–463 (1996) 
  5. Chen T., Francis B., 2 -optimal Sampled–Data Control, Technical Report No. 9001, Dept. Elect. Eng., Univ. Toronto, 1990 MR1097092
  6. Chen T., Francis B., Optimal Sampled–Data Control Systems, Springer–Verlag, London – New York 1995 Zbl0876.93002MR1410060
  7. Conway J. B., A Course in Functional Analysis, Springer–Verlag, Berlin 1990 Zbl0706.46003MR1070713
  8. Desoer C. A., Vidyasagar M., Feedback Systems: Input–Output Properties, Academic Press, NY 1975 Zbl1153.93015MR0490289
  9. Dullerud G. E., Control of Uncertain Sampled–Data Systems, Birkhäuser, Boston 1996 Zbl0843.93006MR1377267
  10. Flamm D. S., Mitter S. K., Approximation of ideal compensators for delay systems, In: Linear Circuits, Systems and Signal Processing: Theory and Applications (C. I. Byrnes, C. F. Martin and R. E. Saeks, eds.), Elsevier Science Publishers B. V., 1988, pp. 517–524 (1988) Zbl0675.93027MR1031070
  11. Foias C., Francis B., Helton J. W., Kwakernaak H., Pearson J. B., -Control Theory, (Lecture Notes in Mathematics 1496.) Springer-Verlag, Berlin 1991 
  12. Foias C., Özbay H., Tannenbaum A., Robust Control of Infinite Dimensional Systems, (Lecture Notes in Control and Information Sciences.) Springer–Verlag, Berlin 1996 Zbl0839.93003MR1369772
  13. Francis B. A., A Course in Control Theory, Springer-Verlag, Berlin 1987 MR0932459
  14. Gibson J. S., Adamian A., 10.1137/0329001, SIAM J. Control Optim. 29 (1991), 1, 1–37 (1991) Zbl0788.93027MR1088217DOI10.1137/0329001
  15. Gibson J. S., Rosen I. G., 10.1137/0326025, SIAM J. Control Optim. 26 (1988), 2, 428–451 (1988) Zbl0644.93013MR0929811DOI10.1137/0326025
  16. Glader C., Högnäs G., Mäkilä P. M., Toivonen H. T., 10.1080/00207179108953623, Internat. J. Control 53 (1991), 2, 369–390 (1991) Zbl0745.93016MR1091150DOI10.1080/00207179108953623
  17. Glover K., 10.1080/00207178408933239, Internat. J. Control 39 (1984), 6, 1115–1193 (1984) MR0748558DOI10.1080/00207178408933239
  18. Glover K., Curtain R. F., Partington J. R., 10.1137/0326049, SIAM J. Control Optim. 26 (1988), 4, 863–898 (1988) Zbl0654.93011MR0948650DOI10.1137/0326049
  19. Glover K., Lam J., Partington J. R., 10.1007/BF02551374, I: singular values of Hankel operators. Math. Control Signals Systems 4 (1990), 325–344 (1990) Zbl0727.41020MR1066376DOI10.1007/BF02551374
  20. Glover K., Lam J., Partington J. R., 10.1007/BF02551279, II: optimal convergence rates of approximants. Math. Control Signals Systems 4 (1991), 233–246 (1991) Zbl0733.41023MR1107236DOI10.1007/BF02551279
  21. Gu G., Khargonekar P. P., Lee E. B., 10.1109/9.24229, IEEE Trans. Automat. Control 34 (1989), 6, 610–618 (1989) Zbl0682.93035MR0996150DOI10.1109/9.24229
  22. Ichikawa A., The semigroup approach to 2 and -control for sampled–data systems with first–order hold, In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 452–457 (1996) 
  23. Ito K., 10.1137/0328067, SIAM J. Control Optim. 28 (1990), 6, 1251–1269 (1990) Zbl0733.93031MR1075203DOI10.1137/0328067
  24. Kabamba P. T., Hara S., 10.1109/9.237646, IEEE Trans. Automat. Control 38 (1993), 1337–1357 (1993) Zbl0787.93068MR1240826DOI10.1109/9.237646
  25. Kamen E. W., Khargonekar P. P., Tannenbaum A., 10.1109/TAC.1985.1103789, IEEE Trans. Automat. Control 30 (1985), 75–78 (1985) MR0777079DOI10.1109/TAC.1985.1103789
  26. Lenz K., Ozbay H., Tannenbaum A., Turi J., Morton B., Robust control design for a flexible beam using a distributed parameter method, In: CDC, Tampa 1989 MR1039105
  27. Logemann H., Townley S., Adaptive low–gain sampled–data control of DPS, In: Proceedings of the 34th Conference on Decision and Control, New Orleans 1995, pp, 2946–2947 (1995) 
  28. Mäkilä P. M., 10.1016/0005-1098(90)90083-T, Automatica 26 (1990), 6, 985–995 (1990) Zbl0717.93028MR1080985DOI10.1016/0005-1098(90)90083-T
  29. McFarlane D. C., Glover K., Robust Controller Design Using Normalized Coprime Factor Plant Descriptions, Springer–Verlag, Berlin 1990 Zbl0688.93044MR1029524
  30. Rodriguez A. A., Dahleh M. A., Weighted optimization for stable infinite–dimensional systems using finite–dimensional techniques, In: Proceedings of the 29th IEEE CDC, Honolulu 1990, pp. 1814–1820 (1990) 
  31. Rodriguez A. A., Dahleh M. A., 10.1016/0167-6911(92)90074-3, Systems Control Lett. 19 (1992), 429–438 (1992) Zbl0787.47024MR1195300DOI10.1016/0167-6911(92)90074-3
  32. Rosen I. G., Optimal discrete–time LQR problems for parabolic systems with unbounded input – approximation and convergence, Control Theory Adv. Tech. 5 (1989), 227–300 (1989) MR1020634
  33. Rosen I. G., Wang C., 10.1137/0330052, SIAM J. Control Optim. 30 (1992), 4, 942–974 (1992) Zbl0765.49021MR1167820DOI10.1137/0330052
  34. Rosen I. G., Wang C., 10.1109/9.256405, IEEE Trans. Automat. Control 37 (1992), 10, 1653–1656 (1992) Zbl0770.93080MR1188781DOI10.1109/9.256405
  35. Royden H. L., Real Analysis, MacMillan Publishing Co, Inc, 1968 MR0151555
  36. Sågfors M. F., Toivonen H. T., The sampled–data problem: The equivalence of discretization–based methods and a Riccati equation solution, In: Proceedings of the 35th Conference on Decision and Control, Kobe 1996, pp. 428–433 (1996) 
  37. Smith M., 10.1137/0328018, SIAM J. Control Optim. 28 (1990), 342–358 (1990) MR1040463DOI10.1137/0328018
  38. Sun W., Nagpal K. M., Khargonekar P. P., 10.1109/9.233150, IEEE Trans. Automat. Control 38 (1993), 1162–1175 (1993) MR1235247DOI10.1109/9.233150
  39. Sz.-Nagy B., Foiaş C., Harmonic Analysis of Operators on Hilbert Space, North–Holland, Amsterdam 1970 Zbl1234.47001MR0275190
  40. Tadmor G., 10.1080/00207179208934306, Internat. J. Control 56 (1992), 1, 99–141 (1992) MR1170889DOI10.1080/00207179208934306
  41. Toivonen H. T., 10.1016/0005-1098(92)90006-2, Automatica 28 (1992), 45–54 (1992) MR1144109DOI10.1016/0005-1098(92)90006-2
  42. Vidyasagar M., Control Systems Synthesis: A Factorization Approach, MIT Press, Cambrdige MA 1985 
  43. Yamamoto Y., 10.1109/9.286247, IEEE Trans. Automat. Control 39 (1994), 703–713 (1994) MR1276768DOI10.1109/9.286247
  44. Yue D., Liu Y., Xu S., 10.1080/00207729508929175, Internat. J. Systems Sci. 26 (1995), 12, 2383–2390 (1995) Zbl0853.93056DOI10.1080/00207729508929175
  45. Youla D. C., Jabr H. A., Bongiorno J. J., 10.1109/TAC.1976.1101223, Part 2: The multivariable case. IEEE Trans. Automat. Control 21 (1976), 319–338 (1976) Zbl0339.93035MR0446637DOI10.1109/TAC.1976.1101223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.