Robust observer design for time-delay systems: a Riccati equation approach
Anas Fattouh; Olivier Sename; Jean-Michel Dion
Kybernetika (1999)
- Volume: 35, Issue: 6, page 753-764
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFattouh, Anas, Sename, Olivier, and Dion, Jean-Michel. "Robust observer design for time-delay systems: a Riccati equation approach." Kybernetika 35.6 (1999): 753-764. <http://eudml.org/doc/33460>.
@article{Fattouh1999,
abstract = {In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.},
author = {Fattouh, Anas, Sename, Olivier, Dion, Jean-Michel},
journal = {Kybernetika},
keywords = {linear system; time delay; Riccati equation; robust observer design; linear system; time delay; Riccati equation; robust observer design},
language = {eng},
number = {6},
pages = {753-764},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Robust observer design for time-delay systems: a Riccati equation approach},
url = {http://eudml.org/doc/33460},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Fattouh, Anas
AU - Sename, Olivier
AU - Dion, Jean-Michel
TI - Robust observer design for time-delay systems: a Riccati equation approach
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 6
SP - 753
EP - 764
AB - In this paper, a method for $H_\infty $ observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.
LA - eng
KW - linear system; time delay; Riccati equation; robust observer design; linear system; time delay; Riccati equation; robust observer design
UR - http://eudml.org/doc/33460
ER -
References
top- Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V., Linear matrix inequalities in system and control theory, SIAM Stud. Appl. Math. 1994 Zbl0816.93004MR1284712
- Choi H. H., Chung M. J., 10.1016/0005-1098(96)00014-3, Automatica 32 (1996), 1073–1075 (1996) MR1405466DOI10.1016/0005-1098(96)00014-3
- Choi H. H., Chung M. J., 10.1016/S0005-1098(96)00242-7, Automatica 33 (1997), 737–739 (1997) MR1448971DOI10.1016/S0005-1098(96)00242-7
- Fattouh A., Sename O., Dion J.-M., Observer design for time–delay systems, In: Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546 (1998)
- Fattouh A., Sename O., Dion J.-M., –decay rate observer design for linear systems with delayed state, In: Proc. of the 8th European Control Conference, Karlsruhe 1999
- Furukawa T., Shimemura E., 10.1080/00207178308932992, Internat. J. Control. 37 (1983), 553–565 (1983) Zbl0503.93050MR0703298DOI10.1080/00207178308932992
- Khargonekar P. P., Petersen I. R., Zhou K., 10.1109/9.50357, IEEE Trans. Automat. Control 35 (1990), 356–361 (1990) MR1044036DOI10.1109/9.50357
- Kolmanovskii V. B., Nosov V. R., Stability of Functional Differential Equation, Academic Press, New York 1986 MR0860947
- Lee E. B., Olbrot A., 10.1080/00207178108922582, Internat. J. Control. 34 (1981), 1061–1078 (1981) Zbl0531.93015MR0643872DOI10.1080/00207178108922582
- Lee J. H., Kim S. W., Kwon W. H., 10.1109/9.273356, IEEE Trans. Automat. Control 39 (1994), 159–162 (1994) MR1258692DOI10.1109/9.273356
- Niculescu S. I., Trofino–Neto A., Dion J.-M., Dugard L., Delay–dependent stability of linear systems with delayed state: An L, M.I. approach. In: Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496 (1995)
- Pearson A. E., Fiagbedzi Y. A., 10.1109/9.29412, IEEE Trans. Automat. Control 34 (1989), 775–777 (1989) Zbl0687.93011MR1000675DOI10.1109/9.29412
- Petersen I. R., Anderson B. D. O., Jonckheere E. A., 10.1002/rnc.4590010304, Internat. J. Robust and Nonlinear Control 1 (1991), 171–185 (1991) DOI10.1002/rnc.4590010304
- Ramos J. L., Pearson A. E., 10.1109/9.400473, IEEE Trans. Automat. Control 40 (1995), 1291–1294 (1995) Zbl0825.93084MR1344050DOI10.1109/9.400473
- Watanabe K., 10.1109/TAC.1986.1104336, IEEE Trans. Automat. Control 31 (1986), 543–550 (1986) Zbl0596.93009MR0839083DOI10.1109/TAC.1986.1104336
- Watanabe K., Ouchi T., 10.1080/0020718508961121, Internat. J. Control 41 (1985), 217–229 (1985) MR0775229DOI10.1080/0020718508961121
- Yao Y. X., Zhang Y. M., Kovacevic R., Parameterization of observers for time delay systems and its application in observer design, IEE Proc. Control Theory Appl. 143 (1996), 225–232 (1996)
- Zhou K., Doyle J. C., Glover K., Robust and Optimal Control, Prentice–Hall, Englewood Cliffs, N. J. 1996 Zbl0999.49500
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.