Gaussian semiparametric estimation in seasonal/cyclical long memory time series
Kybernetika (2000)
- Volume: 36, Issue: 3, page [279]-310
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topArteche, Josu. "Gaussian semiparametric estimation in seasonal/cyclical long memory time series." Kybernetika 36.3 (2000): [279]-310. <http://eudml.org/doc/33484>.
@article{Arteche2000,
abstract = {Gaussian semiparametric or local Whittle estimation of the memory parameter in standard long memory processes was proposed by Robinson [18]. This technique shows several advantages over the popular log- periodogram regression introduced by Geweke and Porter–Hudak [7]. In particular under milder assumptions than those needed in the log periodogram regression it is asymptotically more efficient. We analyse the asymptotic behaviour of the Gaussian semiparametric estimate of the memory parameter in seasonal or cyclical long memory processes allowing for asymmetric spectral divergences or zeros. Consistency and asymptotic normality are obtained.},
author = {Arteche, Josu},
journal = {Kybernetika},
language = {eng},
number = {3},
pages = {[279]-310},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Gaussian semiparametric estimation in seasonal/cyclical long memory time series},
url = {http://eudml.org/doc/33484},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Arteche, Josu
TI - Gaussian semiparametric estimation in seasonal/cyclical long memory time series
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 3
SP - [279]
EP - 310
AB - Gaussian semiparametric or local Whittle estimation of the memory parameter in standard long memory processes was proposed by Robinson [18]. This technique shows several advantages over the popular log- periodogram regression introduced by Geweke and Porter–Hudak [7]. In particular under milder assumptions than those needed in the log periodogram regression it is asymptotically more efficient. We analyse the asymptotic behaviour of the Gaussian semiparametric estimate of the memory parameter in seasonal or cyclical long memory processes allowing for asymmetric spectral divergences or zeros. Consistency and asymptotic normality are obtained.
LA - eng
UR - http://eudml.org/doc/33484
ER -
References
top- Arteche J., Log–periodogram regression in seasonal/cyclical long memory time series, Working Paper, Biltoki 98.17, University of the Basque Country, 1998
- Arteche J., Robinson P. M., Seasonal and cyclical long memory, In: Asymptotics, Nonparametrics and Time Series (S. Ghosh, ed.), Marcel Dekker Inc., New York 1999, pp. 115–148 (1999) Zbl1069.62539MR1724697
- Brillinger D. R., Time Series: Data Analysis and Theory, Holden–Day, San Francisco 1975 Zbl0983.62056MR0443257
- Carlin J. B., Dempster A. P., 10.1080/01621459.1989.10478729, J. Amer. Statist. Assoc. 84 (1989), 6–20 (1989) MR0999663DOI10.1080/01621459.1989.10478729
- Dahlhaus R., 10.1214/aos/1176347393, Ann. Statist. 17 (1989), 1749–1766 (1989) Zbl0703.62091MR1026311DOI10.1214/aos/1176347393
- Fox R., Taqqu M. S., 10.1214/aos/1176349936, Ann. Statist. 14 (1986), 517–532 (1986) Zbl0606.62096MR0840512DOI10.1214/aos/1176349936
- Geweke J., Porter–Hudak S., 10.1111/j.1467-9892.1983.tb00371.x, J. Time Ser. Anal. 4 (1983), 221–238 (1983) Zbl0534.62062MR0738585DOI10.1111/j.1467-9892.1983.tb00371.x
- Giraitis L., Surgailis D., 10.1007/BF01207515, Probab. Theory Related Fields 86 (1990), 87–104 (1990) MR1061950DOI10.1007/BF01207515
- Gray H. L., Zhang N. F., Woorward W. A., 10.1111/j.1467-9892.1989.tb00026.x, J. Time Ser. Anal. 10 (1989), 233–257 (1989) MR1028940DOI10.1111/j.1467-9892.1989.tb00026.x
- Hall P., Heyde C. C., Martingale Limit Theory and its Application in Probability and Mathematical Statistics, Academic Press, New York 1980 MR0624435
- Hassler U., 10.1111/j.1467-9892.1994.tb00174.x, J. Time Ser. Anal. 15 (1994), 19–30 (1994) Zbl0794.62059MR1256854DOI10.1111/j.1467-9892.1994.tb00174.x
- Heyde C. C., Gay R., 10.1016/0304-4149(93)90067-E, Stoch. Process. Appl. 45 (1993), 169–182 (1993) Zbl0771.60021MR1204868DOI10.1016/0304-4149(93)90067-E
- Heyde C. C., Seneta E., 10.2307/3212796, J. Appl. Probab. 9 (1972), 235–256 (1972) MR0343385DOI10.2307/3212796
- Jonas A. J., Persistent Memory Random Processes, Ph.D. Thesis. Department of Statistics, Harvard University, 1983
- Kunsch H. R., Statistical aspects of self-similar processes, In: Proc. First World Congress Bernoulli Soc. (Yu. Prohorov and V. V. Sazanov, eds.), VNU Science Press, Utrecht, 1 (1987), 67–74 (1987)
- Robinson P. M., 10.1080/01621459.1994.10476881, J. Amer. Statist. Assoc. 89 (1994), 1420–1437 (1994) MR1310232DOI10.1080/01621459.1994.10476881
- Robinson P. M., 10.1214/aos/1176324636, Ann. Statist. 23 (1995), 3, 1048–1072 (1995) Zbl0838.62085MR1345214DOI10.1214/aos/1176324636
- Robinson P. M., 10.1214/aos/1176324317, Ann. Statist. 23 (1995), 1630–1661 (1995) Zbl0843.62092MR1370301DOI10.1214/aos/1176324317
- Whittle P., 10.1007/BF02590998, Ark. Mat. 2 (1953), 423–434 (1953) Zbl0053.41003MR0060797DOI10.1007/BF02590998
- Zygmund A., Trigonometric Series, Cambridge University Press, Cambridge, UK 1977 Zbl1084.42003MR0617944
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.