On calculation of stationary density of autoregressive processes

Jiří Anděl; Karel Hrach

Kybernetika (2000)

  • Volume: 36, Issue: 3, page [311]-319
  • ISSN: 0023-5954

Abstract

top
An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.

How to cite

top

Anděl, Jiří, and Hrach, Karel. "On calculation of stationary density of autoregressive processes." Kybernetika 36.3 (2000): [311]-319. <http://eudml.org/doc/33485>.

@article{Anděl2000,
abstract = {An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.},
author = {Anděl, Jiří, Hrach, Karel},
journal = {Kybernetika},
keywords = {AR(1) model; AR(2) model; AR(1) model; AR(2) model},
language = {eng},
number = {3},
pages = {[311]-319},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On calculation of stationary density of autoregressive processes},
url = {http://eudml.org/doc/33485},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Anděl, Jiří
AU - Hrach, Karel
TI - On calculation of stationary density of autoregressive processes
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 3
SP - [311]
EP - 319
AB - An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.
LA - eng
KW - AR(1) model; AR(2) model; AR(1) model; AR(2) model
UR - http://eudml.org/doc/33485
ER -

References

top
  1. Anděl J., Dependent random variables with a given marginal distribution, Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–11 (1983) MR0733140
  2. Anděl J., Marginal distributions of autoregressive processes, In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127–135 (1983) MR0757732
  3. Anděl J., 10.1111/j.1467-9892.1987.tb00001.x, J. Time Ser. Anal. 8 (1987), 373–378 (1987) MR0917790DOI10.1111/j.1467-9892.1987.tb00001.x
  4. Anděl J., AR(1) processes with given moments of marginal distribution, Kybernetika 22 (1989), 337–347 (1989) Zbl0701.62087MR1024709
  5. Anděl J., Bartoň T., 10.1111/j.1467-9892.1986.tb00481.x, J. Time Ser. Anal. 7 (1986), 1–5 (1986) Zbl0587.60033MR0832348DOI10.1111/j.1467-9892.1986.tb00481.x
  6. Anděl J., Garrido M., On stationary distributions of some time series models, In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193–202 (1988) MR1136274
  7. Anděl J., Gómez M., Vega C., Stationary distribution of some nonlinear AR(1) processes, Kybernetika 25 (1989), 453–460 (1989) Zbl0701.60029MR1035151
  8. Anděl J., Netuka I., Zvára K., On threshold autoregressive processes, Kybernetika 20 (1984), 89–106 (1984) Zbl0547.62058MR0747062
  9. Bernier J., 10.2307/1402324, Rev. Inst. Internat. Statist. 38 (1970), 50–71 (1970) DOI10.2307/1402324
  10. Davis R. A., Rosenblatt M., 10.1016/0167-7152(91)90117-A, Statist. Probab. Lett. 11 (1991), 515–521 (1991) Zbl0725.62079MR1116746DOI10.1016/0167-7152(91)90117-A
  11. Feller W., An Introduction to Probability Theory and its Applications II, Wiley, New York 1966 MR0210154
  12. Gaver D. P., Lewis P. A. W., 10.2307/1426429, Adv. in Appl. Probab. 12 (1980), 727–745 (1980) Zbl0453.60048MR0578846DOI10.2307/1426429
  13. Haiman G., Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes, In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North–Holland/Elsevier, Amsterdam 1998, pp. 723–730 (1998) Zbl0926.62080MR1661513
  14. Hamilton J. D., Time Series Analysis, Princeton University Press, Princeton 1994 Zbl0831.62061MR1278033
  15. Loève M., Probability Theory, Second edition. Van Nostrand, Princeton 1955 Zbl0385.60001MR0203748
  16. Rényi A., Probability Theory, Akadémiai Kiadó, Budapest 1970 
  17. Sondhi M. M., 10.1002/j.1538-7305.1983.tb04411.x, Bell System Technical J. 62 (1983), 679–701 (1983) DOI10.1002/j.1538-7305.1983.tb04411.x
  18. Štěpán J., Teorie pravděpodobnosti, Academia, Praha 1987 
  19. Tong H., Non–linear Time Series, Clarendon Press, Oxford 1990 Zbl0835.62076MR1079320
  20. Research, Wolfram, Inc., Mathematica, Version 2, 2. Wolfram Research, Inc., Champaign, Illinois 1994 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.