On calculation of stationary density of autoregressive processes
Kybernetika (2000)
- Volume: 36, Issue: 3, page [311]-319
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAnděl, Jiří, and Hrach, Karel. "On calculation of stationary density of autoregressive processes." Kybernetika 36.3 (2000): [311]-319. <http://eudml.org/doc/33485>.
@article{Anděl2000,
abstract = {An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.},
author = {Anděl, Jiří, Hrach, Karel},
journal = {Kybernetika},
keywords = {AR(1) model; AR(2) model; AR(1) model; AR(2) model},
language = {eng},
number = {3},
pages = {[311]-319},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On calculation of stationary density of autoregressive processes},
url = {http://eudml.org/doc/33485},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Anděl, Jiří
AU - Hrach, Karel
TI - On calculation of stationary density of autoregressive processes
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 3
SP - [311]
EP - 319
AB - An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The AR(1) and AR(2) models are analyzed in detail.
LA - eng
KW - AR(1) model; AR(2) model; AR(1) model; AR(2) model
UR - http://eudml.org/doc/33485
ER -
References
top- Anděl J., Dependent random variables with a given marginal distribution, Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–11 (1983) MR0733140
- Anděl J., Marginal distributions of autoregressive processes, In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127–135 (1983) MR0757732
- Anděl J., 10.1111/j.1467-9892.1987.tb00001.x, J. Time Ser. Anal. 8 (1987), 373–378 (1987) MR0917790DOI10.1111/j.1467-9892.1987.tb00001.x
- Anděl J., AR(1) processes with given moments of marginal distribution, Kybernetika 22 (1989), 337–347 (1989) Zbl0701.62087MR1024709
- Anděl J., Bartoň T., 10.1111/j.1467-9892.1986.tb00481.x, J. Time Ser. Anal. 7 (1986), 1–5 (1986) Zbl0587.60033MR0832348DOI10.1111/j.1467-9892.1986.tb00481.x
- Anděl J., Garrido M., On stationary distributions of some time series models, In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193–202 (1988) MR1136274
- Anděl J., Gómez M., Vega C., Stationary distribution of some nonlinear AR(1) processes, Kybernetika 25 (1989), 453–460 (1989) Zbl0701.60029MR1035151
- Anděl J., Netuka I., Zvára K., On threshold autoregressive processes, Kybernetika 20 (1984), 89–106 (1984) Zbl0547.62058MR0747062
- Bernier J., 10.2307/1402324, Rev. Inst. Internat. Statist. 38 (1970), 50–71 (1970) DOI10.2307/1402324
- Davis R. A., Rosenblatt M., 10.1016/0167-7152(91)90117-A, Statist. Probab. Lett. 11 (1991), 515–521 (1991) Zbl0725.62079MR1116746DOI10.1016/0167-7152(91)90117-A
- Feller W., An Introduction to Probability Theory and its Applications II, Wiley, New York 1966 MR0210154
- Gaver D. P., Lewis P. A. W., 10.2307/1426429, Adv. in Appl. Probab. 12 (1980), 727–745 (1980) Zbl0453.60048MR0578846DOI10.2307/1426429
- Haiman G., Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes, In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North–Holland/Elsevier, Amsterdam 1998, pp. 723–730 (1998) Zbl0926.62080MR1661513
- Hamilton J. D., Time Series Analysis, Princeton University Press, Princeton 1994 Zbl0831.62061MR1278033
- Loève M., Probability Theory, Second edition. Van Nostrand, Princeton 1955 Zbl0385.60001MR0203748
- Rényi A., Probability Theory, Akadémiai Kiadó, Budapest 1970
- Sondhi M. M., 10.1002/j.1538-7305.1983.tb04411.x, Bell System Technical J. 62 (1983), 679–701 (1983) DOI10.1002/j.1538-7305.1983.tb04411.x
- Štěpán J., Teorie pravděpodobnosti, Academia, Praha 1987
- Tong H., Non–linear Time Series, Clarendon Press, Oxford 1990 Zbl0835.62076MR1079320
- Research, Wolfram, Inc., Mathematica, Version 2, 2. Wolfram Research, Inc., Champaign, Illinois 1994
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.