An interpolation problem for multivariate stationary sequences

Lutz Klotz

Kybernetika (2000)

  • Volume: 36, Issue: 3, page [321]-327
  • ISSN: 0023-5954

Abstract

top
Let 𝐗 and 𝐘 be stationarily cross-correlated multivariate stationary sequences. Assume that all values of 𝐘 and all but one values of 𝐗 are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].

How to cite

top

Klotz, Lutz. "An interpolation problem for multivariate stationary sequences." Kybernetika 36.3 (2000): [321]-327. <http://eudml.org/doc/33486>.

@article{Klotz2000,
abstract = {Let $X$ and $Y$ be stationarily cross-correlated multivariate stationary sequences. Assume that all values of $Y$ and all but one values of $X$ are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].},
author = {Klotz, Lutz},
journal = {Kybernetika},
keywords = {linear interpolation},
language = {eng},
number = {3},
pages = {[321]-327},
publisher = {Institute of Information Theory and Automation AS CR},
title = {An interpolation problem for multivariate stationary sequences},
url = {http://eudml.org/doc/33486},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Klotz, Lutz
TI - An interpolation problem for multivariate stationary sequences
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 3
SP - [321]
EP - 327
AB - Let $X$ and $Y$ be stationarily cross-correlated multivariate stationary sequences. Assume that all values of $Y$ and all but one values of $X$ are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].
LA - eng
KW - linear interpolation
UR - http://eudml.org/doc/33486
ER -

References

top
  1. Budinský P., Improvement of interpolation under additional information, In: Proceedings of the 4th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 159–167 (1989) Zbl0711.62083MR1051435
  2. Makagon A., Interpolation error operator for Hilbert space valued stationary stochastic processes, Probab. Math. Statist. 4 (1984), 57–65 (1984) Zbl0575.60040MR0764330
  3. Makagon A., Weron A., q -variate minimal stationary processes, Studia Math. 59 (1976), 41–52 (1976) Zbl0412.60013MR0428419
  4. Pringle R. M., Rayner A. A., Generalized Inverse Matrices with Applications to Statistics, Griffin, London 1971 Zbl0231.15008MR0314860
  5. Rozanov, Yu. A., Stationary Random Processes (in Russian), Fizmatgiz, Moscow 1963 
  6. Salehi H., 10.1007/BF02591023, Ark. Mat. 7 (1967), 299–303 (1967) MR0233951DOI10.1007/BF02591023
  7. Salehi H., 10.1007/BF02591024, Ark. Mat. 7 (1967), 305–311 (1967) MR0236991DOI10.1007/BF02591024
  8. Weron A., On characterizations of interpolable and minimal stationary processes, Studia Math. 49 (1974), 165–183 (1974) Zbl0303.60034MR0341587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.