Generated triangular norms

Erich Peter Klement; Radko Mesiar; Endre Pap

Kybernetika (2000)

  • Volume: 36, Issue: 3, page [363]-377
  • ISSN: 0023-5954

Abstract

top
An overview of generated triangular norms and their applications is presented. Several properties of generated t -norms are investigated by means of the corresponding generators, including convergence properties. Some applications are given. An exhaustive list of relevant references is included.

How to cite

top

Klement, Erich Peter, Mesiar, Radko, and Pap, Endre. "Generated triangular norms." Kybernetika 36.3 (2000): [363]-377. <http://eudml.org/doc/33489>.

@article{Klement2000,
abstract = {An overview of generated triangular norms and their applications is presented. Several properties of generated $t$-norms are investigated by means of the corresponding generators, including convergence properties. Some applications are given. An exhaustive list of relevant references is included.},
author = {Klement, Erich Peter, Mesiar, Radko, Pap, Endre},
journal = {Kybernetika},
keywords = {triangular norm},
language = {eng},
number = {3},
pages = {[363]-377},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generated triangular norms},
url = {http://eudml.org/doc/33489},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Klement, Erich Peter
AU - Mesiar, Radko
AU - Pap, Endre
TI - Generated triangular norms
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 3
SP - [363]
EP - 377
AB - An overview of generated triangular norms and their applications is presented. Several properties of generated $t$-norms are investigated by means of the corresponding generators, including convergence properties. Some applications are given. An exhaustive list of relevant references is included.
LA - eng
KW - triangular norm
UR - http://eudml.org/doc/33489
ER -

References

top
  1. Abel N. H., Untersuchungen der Funktionen zweier unabhängigen veränderlichen Groessen x und y wie f ( x , y ) , welche die Eigenschaft haben, dass f ( z , f ( x , y ) ) eine symmetrische Funktion von x , y und z ist, J. Reine Angew. Math. 1 (1928), 11–15 (1928) 
  2. Aczél J., Sur les opérations definies pour des nombres réels, Bull. Soc. Math. France 76 (1949), 59–64 (1949) 
  3. Aczél J., Lectures on Functional Equations and their Applications, Academic Press, New York 1966 MR0208210
  4. Aczél J., Alsina C., Characterization of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgments, Methods Oper. Res. 48 (1984), 3–22 (1984) MR0736352
  5. Arnold V., Concerning the representability of functions of two variables in the form X [ Φ ( x ) + Ψ ( y ) ] , Uspekhi Mat. Nauk 12 (1957), 119–121 (1957) MR0090623
  6. Bezdek J. C., Harris J. D., Fuzzy partitions and relations: An axiomatic basis for clustering, Fuzzy Sets and Systems 1 (1978), 111–127 (1978) Zbl0442.68093MR0502319
  7. Calvo T., Mesiar R., Continuous generated associative aggregation operators, Submitted Zbl0996.03034
  8. Baets B. De, Mesiar R., Pseudo–metrics and T –equivalences, J. Fuzzy Math. 5 (1997), 471–481 (1997) MR1457163
  9. Baets B. De, Mesiar R., 𝒯 -partitions, Fuzzy Sets and Systems 97 (1998), 211–223 (1998) MR1645614
  10. Dombi J., 10.1016/0377-2217(82)90227-2, Europ. J. Oper. Research 10 (1982), 282–293 (1982) Zbl0488.90003MR0665480DOI10.1016/0377-2217(82)90227-2
  11. Dombi J., 10.1016/0165-0114(82)90005-7, Fuzzy Sets and Systems 8 (1982), 149–163 (1982) MR0666628DOI10.1016/0165-0114(82)90005-7
  12. Dubois D., Prade H., Fuzzy numbers: An overview, In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic (J. C. Bezdek, ed.), CRC Press, Boca Raton 1987, pp. 3–39 (1987) Zbl0663.94028MR0910312
  13. Dubois D., Kerre E. E., Mesiar R., Prade H., Fuzzy interval analysis, In: Mathematics and Fuzzy Sets. Basic Principles. The Handbook of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Kluwer Acad. Publ., Boston 2000, pp. 483–582 Zbl0988.26020MR1890240
  14. Féron R., Sur les tableaux de corrélation dont les marges sont donneés, Publ. Inst. Statist. Univ. Paris 5 (1956), 3–12 (1956) Zbl0074.14205MR0082246
  15. Frank M. J., 10.1007/BF02189866, Aequationes Math. 19 (1979), 194–226 (1979) Zbl0444.39003MR0556722DOI10.1007/BF02189866
  16. Fullér R., Keresztfalvi T., 10.1016/0165-0114(92)90188-A, Fuzzy Sets and Systems 51 (1992), 155–159 (1992) MR1188307DOI10.1016/0165-0114(92)90188-A
  17. Fung L. W., Fu K. S., An axiomatic approach to rational decision making in a fuzzy environment, In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. A. Zadeh et al, eds.), Academic Press, New York 1975, pp. 227–256 (1975) Zbl0366.90003MR0398652
  18. Gottwald S., Approximate solutions of fuzzy relational equations and a characterization of t -norms that define metrics for fuzzy sets, Fuzzy Sets and Systems 75 (1995), 189–201 (1995) Zbl0856.04006MR1358221
  19. Hamacher H., Uber logische Aggregationen nicht-binär explizierter Entscheidungskriterien, Rita G. Fischer Verlag, Frankfurt 1978 
  20. Hoele U., Fuzzy equalities and indistinguishability, In: Proc. EUFIT’93, Aachen 1993, pp. 358–363 (1993) 
  21. Jenei S., 10.1016/S0165-0114(97)00021-3, Fuzzy Sets and Systems 99 (1998), 179–186 (1998) Zbl0938.03083MR1646173DOI10.1016/S0165-0114(97)00021-3
  22. Jenei S., Fodor J. C., 10.1016/S0165-0114(97)00063-8, Fuzzy Sets and Systems 100 (1998), 273–282 (1998) Zbl0938.03084MR1663745DOI10.1016/S0165-0114(97)00063-8
  23. Klement E. P., 10.1016/0022-247X(82)90015-4, J. Math. Anal. Appl. 85 (1982), 543–565 (1982) Zbl0491.28003MR0649189DOI10.1016/0022-247X(82)90015-4
  24. Klement E. P., Mesiar R., Pap E., 10.1142/S0218488596000081, Internat. J. Uncertain. Fuzziness Knowledge–Based Systems 4 (1996), 129–144 (1996) Zbl1232.03041MR1390899DOI10.1142/S0218488596000081
  25. Klement E. P., Mesiar R., Pap E., Additive generators of t -norms which are not necessarily continuous, In: Proc. EUFIT’98, Aachen 1996, pp. 70–73 (1996) 
  26. Klement E. P., Mesiar R., Pap E., 10.1016/0165-0114(95)00407-6, Fuzzy Sets and Systems 86 (1997), 189–195 (1997) Zbl0914.04006MR1437918DOI10.1016/0165-0114(95)00407-6
  27. Klement E. P., Mesiar R., Pap E., Quasi– and pseudo–inverses of monotone functions, and the construction of t -norms, Fuzzy Sets and Systems 104 (1999), 3–13 (1999) Zbl0953.26008MR1685803
  28. Klement E. P., Mesiar R., Pap E., Triangular Norms, Kluwer Acad. Publ., Dordrecht 2000 Zbl1087.20041MR1790096
  29. Kolesárová A., Triangular norm–based addition of linear fuzzy numbers, Tatra Mt. Math. Publ. 6 (1995), 75–81 (1995) Zbl0851.04005MR1363985
  30. Kolesárová A., 10.1016/S0165-0114(97)00142-5, Fuzzy Sets and Systems 91 (1997), 215–229 (1997) MR1480047DOI10.1016/S0165-0114(97)00142-5
  31. Kolesárová A., Comparison of quasi–arithmetic means, In: Proc. EUROFUSE–SIC’98, Budapest 1999, pp. 237–240 (1999) 
  32. Kolesárová A., Limit properties of quasi–arithmetic means, In: Proc. EUFIT’99, Aachen, 1999 (CD–rom) (1999) 
  33. Kolesárová A., Komorníková M., 10.1016/S0165-0114(98)00263-2, Fuzzy Sets and Systems 104 (1999), 109–120 (1999) Zbl0931.68123DOI10.1016/S0165-0114(98)00263-2
  34. Komorníková M., Generated aggregation operators, In: Proc. EUSFLAT’99, Palma de Mallorca 1999, pp. 355–357 (1999) 
  35. Komorníková M., Smoothly generated discrete aggregation operators, BUSEFAL 80 (1999), 35–39 (1999) 
  36. Ling C. M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
  37. Mareš M., Computation over Fuzzy Quantities, CRC Press, Boca Raton 1994 Zbl0859.94035MR1327525
  38. Marko V., Mesiar R., A note on a nilpotent lower bound of nilpotent triangular norms, Fuzzy Sets and Systems 104 (1999), 27–34 (1999) Zbl0930.03075MR1685806
  39. Marko V., Mesiar R., Lower and upper bounds of continuous Archimedean t -norms, Fuzzy Sets and Systems, to appear MR1685806
  40. Marková A., A note on g -derivative and g -integral, Tatra Mt. Math. Publ. 8 (1996), 71–76 (1996) Zbl0918.28023MR1475263
  41. Marková A., 10.1016/0165-0114(95)00370-3, Fuzzy Sets and Systems 85 (1997), 379–384 (1997) MR1428314DOI10.1016/0165-0114(95)00370-3
  42. Marková–Stupňanová A., A note on idempotent functions with respect to pseudo–convolution, Fuzzy Sets and Systems 102 (1999), 417–421 (1999) MR1676908
  43. Menger K., 10.1073/pnas.28.12.535, Proc. Nat. Acad. Sci. U. S. A. 8 (1942), 535–537 (1942) Zbl0063.03886MR0007576DOI10.1073/pnas.28.12.535
  44. Mesiar R., 10.1016/0165-0114(95)00178-6, Fuzzy Sets and Systems 79 (1996), 259–261 (1996) MR1388398DOI10.1016/0165-0114(95)00178-6
  45. Mesiar R., 10.1016/S0165-0114(97)00143-7, Fuzzy Sets and Systems 91 (1997), 231–237 (1997) Zbl0919.04011MR1480048DOI10.1016/S0165-0114(97)00143-7
  46. Mesiar R., Approximation of continuous t -norms by strict t -norms with smooth generators, BUSEFAL 75 (1998), 72–79 (1998) 
  47. Mesiar R., On the pointwise convergence of continuous Archimedean t -norms and the convergence of their generators, BUSEFAL 75 (1998), 39–45 (1998) 
  48. Mesiar R., Generated conjunctions and related operators in MV-logic as a basis of AI applications, In: Proc. ECAI’98, Brighton 1998, Workshop WG17 (1998) 
  49. Mesiar R., Navara M., 10.1006/jmaa.1996.0243, J. Math. Anal. Appl. 201 (1996), 91–102 (1996) MR1397888DOI10.1006/jmaa.1996.0243
  50. Mesiar R., Navara M., 10.1016/S0165-0114(98)00256-5, Fuzzy Sets and Systems 104 (1999), 35–41 (1999) Zbl0972.03052MR1685807DOI10.1016/S0165-0114(98)00256-5
  51. Mostert P. S., Shields A. L., 10.2307/1969668, Ann. of Math. 65 (1957), 117–143 (1957) MR0084103DOI10.2307/1969668
  52. Nguyen H. T., Kreinovich V., Wojciechowski T., 10.1016/S0888-613X(98)00009-7, Internat. J. Approx. Reason. 18 (1998), 239–249 (1998) Zbl0955.68108MR1661123DOI10.1016/S0888-613X(98)00009-7
  53. Pap E., g -calculus, Univ. u Novom Sadu Zb. Rad. Prirod.–Mat. Fak. Ser. Mat. 23 (1993), 145–156 (1993) Zbl0823.28011MR0939298
  54. Schweizer B., Sklar A., 10.2140/pjm.1960.10.313, Pacific J. Math. 10 (1960), 313–334 (1960) Zbl0096.33203MR0115153DOI10.2140/pjm.1960.10.313
  55. Schweizer B., Sklar A., Associative functions and triangle inequalities, Publ. Math. Debrecen 8 (1961), 169–186 (1961) MR0132939
  56. Schweizer B., Sklar A., Associative functions and abstract semigroups, Publ. Math. Debrecen 10 (1963), 69–81 (1963) MR0170967
  57. Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, New York 1983 Zbl0546.60010MR0790314
  58. Sklar A., Fonctions de répartition a n -dimensions et leurs marges, Publ. Inst. Stat. Univ. Paris 8 (1959), 229–231 (1959) MR0125600
  59. Smutná D., Vojtáš P., Fuzzy resolution with residuation of material implication, In: Proc. EUROFUSE–SIC’99, Budapest 1999, pp. 472–476 (1999) 
  60. Tardiff R. M., 10.1007/BF02192679, Aequationes Math. 27 (1984), 308–316 (1984) Zbl0549.26013MR0762688DOI10.1007/BF02192679
  61. Viceník P., A note on generators of t -norms, BUSEFAL 75 (1998), 33–38 (1998) 
  62. Viceník P., Additive generators and discontinuity, BUSEFAL 76 (1998), 25–28 (1998) 
  63. Viceník P., Additive generators of triangular norms with an infinite set of discontinuity points, In: Proc. EUROFUSE–SIC’99, Budapest 1999, pp. 412–416 (1999) 
  64. Viceník P., Generated t -norms and the Archimedean property, In: Proc. EUFIT’99, Aachen 1999 (CD–rom) (1999) 
  65. Viceník P., Non–continuous generated t -norms, In: Abstracts of Linz’98 “Topological and Algebraic Structures”, Linz 1999, pp. 9–10 (1999) 
  66. Viceník P., Additive generators of non–continuous triangular norms, Preprint, submitted Zbl1045.03046
  67. Yager R. R., 10.1016/0165-0114(80)90013-5, Fuzzy Setsna and Systems 4 (1980), 235–242 (1980) Zbl0443.04008MR0589241DOI10.1016/0165-0114(80)90013-5
  68. Zadeh L. A., 10.1016/S0020-0255(71)80005-1, Inform. Sci. 3 (1971), 177–200 (1971) Zbl0218.02058MR0297650DOI10.1016/S0020-0255(71)80005-1
  69. Zadeh L. A., The concept of linguistic fuzzy variable and its applications to approximate reasoning, Part I. Inform. Sci. 8 (1975), 199–261 (1975) MR0386369

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.