Second order asymptotic distribution of the -divergence goodness-of-fit statistics
Kybernetika (2000)
- Volume: 36, Issue: 4, page [437]-454
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPardo, María Del Carmen. "Second order asymptotic distribution of the $R_\phi $-divergence goodness-of-fit statistics." Kybernetika 36.4 (2000): [437]-454. <http://eudml.org/doc/33494>.
@article{Pardo2000,
abstract = {The distribution of each member of the family of statistics based on the $R_\{\phi \}$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.},
author = {Pardo, María Del Carmen},
journal = {Kybernetika},
language = {eng},
number = {4},
pages = {[437]-454},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Second order asymptotic distribution of the $R_\phi $-divergence goodness-of-fit statistics},
url = {http://eudml.org/doc/33494},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Pardo, María Del Carmen
TI - Second order asymptotic distribution of the $R_\phi $-divergence goodness-of-fit statistics
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 4
SP - [437]
EP - 454
AB - The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.
LA - eng
UR - http://eudml.org/doc/33494
ER -
References
top- Ali M. S., Silvey D., A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140 (1966) Zbl0203.19902MR0196777
- Bednarski T., Ledwina T., A note on a biasedness of tests of fit, Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193 (1978) MR0512257
- Burbea J., -divergences and related topics, Encycl. Statist. Sci. 44 (1983), 290–296 (1983)
- Burbea J., Rao C. R., 10.1109/TIT.1982.1056497, IEEE Trans. Inform. Theory 28 (1982), 489–495 (1982) Zbl0479.94009MR0672884DOI10.1109/TIT.1982.1056497
- Burbea J., Rao C. R., 10.1109/TIT.1982.1056573, IEEE Trans. Inform. Theory 28 (1982), 961–963 (1982) MR0687297DOI10.1109/TIT.1982.1056573
- Cohen A., Sackrowitz H. B., 10.1214/aos/1176343197, Ann. Statist. 3 (1975), 959–964 (1975) Zbl0311.62021MR0381087DOI10.1214/aos/1176343197
- Cressie N., Read T. R. C., Multinomial goodness of fit test, J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 (1984) MR0790631
- Csiszár I., Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten, Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 (1963) MR0164374
- Greenwood P. E., Nikolin M. S., A Guide to Chi–squared Testing, Wiley, New York 1996 MR1379800
- Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig 1987 Zbl0656.62004MR0926905
- Mann H. B., Wald A., 10.1214/aoms/1177731569, Ann. Math. Statist. 13 (1942), 306–317 (1942) MR0007224DOI10.1214/aoms/1177731569
- Pardo M. C., 10.1006/jmva.1998.1799, J. Multivariate Anal. 69 (1999), 65–87 (1999) MR1701407DOI10.1006/jmva.1998.1799
- Pardo M. C., Vajda I., 10.1109/18.605597, Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293 (1997) Zbl0884.94015MR1454961DOI10.1109/18.605597
- Pearson K., On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Philosophy Magazine 50 (1900), 157–172 (1900)
- Rao C. R., Asymptotic efficiency and limiting information, In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546 (1961) Zbl0156.39802MR0133192
- Rao C. R., Linear Statistical Inference and Its Applications, Second edition. Wiley, New York 1973 Zbl0256.62002MR0346957
- Rao C. R., Analysis of Diversity: A Unified Approach, Technical Report No. 81-26, University of Pittsburhg 1981 Zbl0569.62061MR0705316
- Read T. R. C., On Choosing a Goodness–of–fit test, Unpublished Ph.D. Thesis, Flinders University, South Australia 1982 Zbl0564.62033
- Read T. R. C., 10.1007/BF02481953, Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69 (1984) Zbl0554.62015MR0752006DOI10.1007/BF02481953
- Read T. R. C., Cressie N., Goodness of Fit Statistics for Discrete Multivariate Data, Springer, New York 1988 Zbl0663.62065MR0955054
- Schorr B., 10.1080/02331887408801174, Math. Operationsforsch. Statist. 5 (1974), 357–377 (1974) Zbl0285.62018MR0388650DOI10.1080/02331887408801174
- Siotani M., Fujikoshi Y., Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics, Hiroshima Math. J. 14 (1984), 115–124 (1984) Zbl0553.62017MR0750392
- Sturges H. A., 10.1080/01621459.1926.10502161, J. Amer. Statist. Assoc. 21 (1926), 65–66 (1926) DOI10.1080/01621459.1926.10502161
- Vajda I., Theory of Statistical Inference and Information, Kluwer Academic Publishers, Dordrecht – Boston 1989 Zbl0711.62002
- Yarnold J. K., 10.1214/aoms/1177692389, Ann. of Math. Statist. 43 (1972), 1566–1580 (1972) Zbl0256.62022MR0372967DOI10.1214/aoms/1177692389
- Zografos K., Ferentinos K., Papaioannou T., 10.1080/03610929008830290, Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802 (1990) MR1075502DOI10.1080/03610929008830290
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.