Second order asymptotic distribution of the R φ -divergence goodness-of-fit statistics

María Del Carmen Pardo

Kybernetika (2000)

  • Volume: 36, Issue: 4, page [437]-454
  • ISSN: 0023-5954

Abstract

top
The distribution of each member of the family of statistics based on the R φ -divergence for testing goodness-of-fit is a chi-squared to o ( 1 ) (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the φ -dependent second order component from the o ( 1 ) term.

How to cite

top

Pardo, María Del Carmen. "Second order asymptotic distribution of the $R_\phi $-divergence goodness-of-fit statistics." Kybernetika 36.4 (2000): [437]-454. <http://eudml.org/doc/33494>.

@article{Pardo2000,
abstract = {The distribution of each member of the family of statistics based on the $R_\{\phi \}$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.},
author = {Pardo, María Del Carmen},
journal = {Kybernetika},
language = {eng},
number = {4},
pages = {[437]-454},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Second order asymptotic distribution of the $R_\phi $-divergence goodness-of-fit statistics},
url = {http://eudml.org/doc/33494},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Pardo, María Del Carmen
TI - Second order asymptotic distribution of the $R_\phi $-divergence goodness-of-fit statistics
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 4
SP - [437]
EP - 454
AB - The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.
LA - eng
UR - http://eudml.org/doc/33494
ER -

References

top
  1. Ali M. S., Silvey D., A general class of coefficients of divergence of one distribution from another, J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140 (1966) Zbl0203.19902MR0196777
  2. Bednarski T., Ledwina T., A note on a biasedness of tests of fit, Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193 (1978) MR0512257
  3. Burbea J., J -divergences and related topics, Encycl. Statist. Sci. 44 (1983), 290–296 (1983) 
  4. Burbea J., Rao C. R., 10.1109/TIT.1982.1056497, IEEE Trans. Inform. Theory 28 (1982), 489–495 (1982) Zbl0479.94009MR0672884DOI10.1109/TIT.1982.1056497
  5. Burbea J., Rao C. R., 10.1109/TIT.1982.1056573, IEEE Trans. Inform. Theory 28 (1982), 961–963 (1982) MR0687297DOI10.1109/TIT.1982.1056573
  6. Cohen A., Sackrowitz H. B., 10.1214/aos/1176343197, Ann. Statist. 3 (1975), 959–964 (1975) Zbl0311.62021MR0381087DOI10.1214/aos/1176343197
  7. Cressie N., Read T. R. C., Multinomial goodness of fit test, J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 (1984) MR0790631
  8. Csiszár I., Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten, Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 (1963) MR0164374
  9. Greenwood P. E., Nikolin M. S., A Guide to Chi–squared Testing, Wiley, New York 1996 MR1379800
  10. Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig 1987 Zbl0656.62004MR0926905
  11. Mann H. B., Wald A., 10.1214/aoms/1177731569, Ann. Math. Statist. 13 (1942), 306–317 (1942) MR0007224DOI10.1214/aoms/1177731569
  12. Pardo M. C., 10.1006/jmva.1998.1799, J. Multivariate Anal. 69 (1999), 65–87 (1999) MR1701407DOI10.1006/jmva.1998.1799
  13. Pardo M. C., Vajda I., 10.1109/18.605597, Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293 (1997) Zbl0884.94015MR1454961DOI10.1109/18.605597
  14. Pearson K., On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Philosophy Magazine 50 (1900), 157–172 (1900) 
  15. Rao C. R., Asymptotic efficiency and limiting information, In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546 (1961) Zbl0156.39802MR0133192
  16. Rao C. R., Linear Statistical Inference and Its Applications, Second edition. Wiley, New York 1973 Zbl0256.62002MR0346957
  17. Rao C. R., Analysis of Diversity: A Unified Approach, Technical Report No. 81-26, University of Pittsburhg 1981 Zbl0569.62061MR0705316
  18. Read T. R. C., On Choosing a Goodness–of–fit test, Unpublished Ph.D. Thesis, Flinders University, South Australia 1982 Zbl0564.62033
  19. Read T. R. C., 10.1007/BF02481953, Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69 (1984) Zbl0554.62015MR0752006DOI10.1007/BF02481953
  20. Read T. R. C., Cressie N., Goodness of Fit Statistics for Discrete Multivariate Data, Springer, New York 1988 Zbl0663.62065MR0955054
  21. Schorr B., 10.1080/02331887408801174, Math. Operationsforsch. Statist. 5 (1974), 357–377 (1974) Zbl0285.62018MR0388650DOI10.1080/02331887408801174
  22. Siotani M., Fujikoshi Y., Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics, Hiroshima Math. J. 14 (1984), 115–124 (1984) Zbl0553.62017MR0750392
  23. Sturges H. A., 10.1080/01621459.1926.10502161, J. Amer. Statist. Assoc. 21 (1926), 65–66 (1926) DOI10.1080/01621459.1926.10502161
  24. Vajda I., Theory of Statistical Inference and Information, Kluwer Academic Publishers, Dordrecht – Boston 1989 Zbl0711.62002
  25. Yarnold J. K., 10.1214/aoms/1177692389, Ann. of Math. Statist. 43 (1972), 1566–1580 (1972) Zbl0256.62022MR0372967DOI10.1214/aoms/1177692389
  26. Zografos K., Ferentinos K., Papaioannou T., 10.1080/03610929008830290, Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802 (1990) MR1075502DOI10.1080/03610929008830290

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.