The similarity of two strings of fuzzy sets
Kybernetika (2000)
- Volume: 36, Issue: 6, page [671]-687
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAndrejková, Gabriela. "The similarity of two strings of fuzzy sets." Kybernetika 36.6 (2000): [671]-687. <http://eudml.org/doc/33510>.
@article{Andrejková2000,
abstract = {Let $\{\mathcal \{A\}\},\,\{\mathcal \{B\}\}$ be the strings of fuzzy sets over $\{\chi \}$, where $\{\chi \}$ is a finite universe of discourse. We present the algorithms for operations on fuzzy sets and the polynomial time algorithms to find the string $\{\mathcal \{C\}\}$ over $\{\chi \}$ which is a closest common subsequence of fuzzy sets of $\{\mathcal \{A\}\}$ and $\{\mathcal \{B\}\}$ using different operations to measure a similarity of fuzzy sets.},
author = {Andrejková, Gabriela},
journal = {Kybernetika},
keywords = {fuzzy set; polynomial-time algorithms; fuzzy set; polynomial-time algorithms},
language = {eng},
number = {6},
pages = {[671]-687},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The similarity of two strings of fuzzy sets},
url = {http://eudml.org/doc/33510},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Andrejková, Gabriela
TI - The similarity of two strings of fuzzy sets
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 6
SP - [671]
EP - 687
AB - Let ${\mathcal {A}},\,{\mathcal {B}}$ be the strings of fuzzy sets over ${\chi }$, where ${\chi }$ is a finite universe of discourse. We present the algorithms for operations on fuzzy sets and the polynomial time algorithms to find the string ${\mathcal {C}}$ over ${\chi }$ which is a closest common subsequence of fuzzy sets of ${\mathcal {A}}$ and ${\mathcal {B}}$ using different operations to measure a similarity of fuzzy sets.
LA - eng
KW - fuzzy set; polynomial-time algorithms; fuzzy set; polynomial-time algorithms
UR - http://eudml.org/doc/33510
ER -
References
top- Andrejková G., The longest restricted common subsequence problem, In: Proc. Prague Stringology Club Workshop’98, Prague 1998, pp. 14–25 (1998)
- Andrejková G., The set closest common subsequence problem, In: Proceedings of 4th International Conference on Applied Informatics’99, Eger–Noszvaj 1999, p. 8 (1999)
- Gottwald S., Fuzzy Sets and Fuzzy Logic, Vieweg, Wiesbaden 1993, p. 216 (1993) Zbl0782.94025MR1218623
- Hájek P., Mathematics of Fuzzy Logic, Kluwer, Dordrecht 1998
- Hirschberg D. S., 10.1145/322033.322044, J. Assoc. Comput. Mach. 24 (1977), 664–675 (1977) MR0461985DOI10.1145/322033.322044
- Hirschberg D. S., Larmore L. L., 10.1007/BF01840351, Algorithmica 2 (1987), 91–95 (1987) Zbl0642.68065MR1554313DOI10.1007/BF01840351
- Hirschberg D. S., Larmore L. L., 10.1007/BF01553904, Algorithmica 4 (1989), 503–510 (1989) Zbl0684.68080MR1019389DOI10.1007/BF01553904
- Kaufmann A., Introduction to Theory of Fuzzy Subsets, Vol. 1: Fundamental Theoretical Elements. Academic Press, New York 1975 MR0485402
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer, Dordrecht 2000 Zbl1087.20041MR1790096
- Mohanty S. P., 10.1016/0012-365X(80)90177-6, Discrete Math. 31 (1980), 91–95 (1980) Zbl0444.05014MR0578066DOI10.1016/0012-365X(80)90177-6
- Nakatsu N., Kombayashi, Y., Yajima S., A longest common subsequence algorithm suitable for similar text strings, Acta Inform. 18 (1982), 171–179 (1982) MR0687701
- Zadeh L., 10.1016/0165-0114(78)90029-5, Fuzzy Sets and Systems 1 (1978), 3–28 (1978) MR0480045DOI10.1016/0165-0114(78)90029-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.