Solution set in a special case of generalized Nash equilibrium games
Kybernetika (2001)
- Volume: 37, Issue: 1, page [21]-37
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCach, Josef. "Solution set in a special case of generalized Nash equilibrium games." Kybernetika 37.1 (2001): [21]-37. <http://eudml.org/doc/33514>.
@article{Cach2001,
abstract = {A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem.},
author = {Cach, Josef},
journal = {Kybernetika},
keywords = {generalized Nash equilibrium problem; Cournot oligopoly problem; generalized Nash equilibrium problem; Cournot oligopoly problem},
language = {eng},
number = {1},
pages = {[21]-37},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solution set in a special case of generalized Nash equilibrium games},
url = {http://eudml.org/doc/33514},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Cach, Josef
TI - Solution set in a special case of generalized Nash equilibrium games
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 1
SP - [21]
EP - 37
AB - A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem.
LA - eng
KW - generalized Nash equilibrium problem; Cournot oligopoly problem; generalized Nash equilibrium problem; Cournot oligopoly problem
UR - http://eudml.org/doc/33514
ER -
References
top- Arrow K., Debreu G., 10.2307/1907353, Econometrica 22 (1954), 265–290 (1954) MR0077069DOI10.2307/1907353
- Baiocchi C., Capelo A., Variational and Quasi-Variational Inequalities, Wiley, New York 1984 MR0745619
- Cach J., A Nonsmooth Approach to the Computation of Equilibria (in Czech), Diploma Thesis, Charles University, Prague 1996
- Chan D., Pang J.-S., 10.1287/moor.7.2.211, Math. Oper. Res. 7 (1982), 211–222 (1982) MR0665558DOI10.1287/moor.7.2.211
- Debreu G., 10.1073/pnas.38.10.886, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886–893 (1952) Zbl0047.38804MR0050251DOI10.1073/pnas.38.10.886
- Harker P. T., 10.1007/BF02591802, Math. Programming 30 (1984), 105–111 (1984) Zbl0559.90015MR0755118DOI10.1007/BF02591802
- Harker P. T., 10.1016/0377-2217(91)90325-P, European J. Oper. Res. 54 (1991), 81–94 (1991) Zbl0754.90070DOI10.1016/0377-2217(91)90325-P
- Harker P. T., Pang J.-S., 10.1007/BF01582255, Math. Programming 60 (1990), 161–220 (1990) MR1073707DOI10.1007/BF01582255
- Ichiishi T., Game Theory for Economic Analysis, Academic Press, New York 1983 Zbl0522.90104MR0700688
- Mosco V., Implicit variational problems and quasi-variational inequalities, In: Nonlinear Operations and the Calculus of Variations – Summer School held in Bruxelles on 8–19 September 1975 (J. P. Gossez et al, ed., Lecture Notes in Mathematics 543.) Springer Verlag, Berlin 1976, pp. 83–156 (19 S) MR0513202
- Murphy F. H., Sherali H. D., Soyster A. L., 10.1007/BF01585096, Math. Programming 24 (1982), 92–106 (1982) Zbl0486.90015MR0667941DOI10.1007/BF01585096
- Nash J., 10.2307/1969529, Ann. of Math. 54 (1951), 286–295 (1951) Zbl0045.08202MR0043432DOI10.2307/1969529
- Outrata J. V., Kočvara M., Zowe J., Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results, Kluwer, Dordrecht 1998 Zbl0947.90093MR1641213
- Outrata J. V., Zowe J., 10.1007/BF01585759, Math. Programming 68 (1995), 105–130 (1995) Zbl0835.90093MR1312107DOI10.1007/BF01585759
- Rosen J. B., 10.2307/1911749, Econometrica 33 (1965), 520–534 (1965) Zbl0142.17603MR0194210DOI10.2307/1911749
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.