The variational principle of fixed point theorems in certain fuzzy topological spaces
P. Balasubramaniam; S. Murali Sankar
Kybernetika (2001)
- Volume: 37, Issue: 2, page [147]-158
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBalasubramaniam, P., and Sankar, S. Murali. "The variational principle of fixed point theorems in certain fuzzy topological spaces." Kybernetika 37.2 (2001): [147]-158. <http://eudml.org/doc/33523>.
@article{Balasubramaniam2001,
abstract = {The main purpose of this paper is to introduce the concept of $F$-type fuzzy topological spaces. Further variational principle and Caristi’s fixed point theorem have been extended in the $F$-type fuzzy topological spaces.},
author = {Balasubramaniam, P., Sankar, S. Murali},
journal = {Kybernetika},
keywords = {$F$-type fuzzy topological space; variational principle; -type fuzzy topological space; variational principle},
language = {eng},
number = {2},
pages = {[147]-158},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The variational principle of fixed point theorems in certain fuzzy topological spaces},
url = {http://eudml.org/doc/33523},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Balasubramaniam, P.
AU - Sankar, S. Murali
TI - The variational principle of fixed point theorems in certain fuzzy topological spaces
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 2
SP - [147]
EP - 158
AB - The main purpose of this paper is to introduce the concept of $F$-type fuzzy topological spaces. Further variational principle and Caristi’s fixed point theorem have been extended in the $F$-type fuzzy topological spaces.
LA - eng
KW - $F$-type fuzzy topological space; variational principle; -type fuzzy topological space; variational principle
UR - http://eudml.org/doc/33523
ER -
References
top- Caristi J., 10.1090/S0002-9947-1976-0394329-4, Trans. Amer. Math. Soc. 215 (1976), 241–251 (1976) MR0394329DOI10.1090/S0002-9947-1976-0394329-4
- Ekeland J., 10.1016/0022-247X(74)90025-0, J. Math. Anal. Appl. 47 (1974), 324–353 (1974) Zbl0286.49015MR0346619DOI10.1016/0022-247X(74)90025-0
- Fang J. X., 10.1006/jmaa.1996.0323, J. Math. Anal. Appl. 202 (1996), 398–412 (1996) Zbl0859.54042MR1406237DOI10.1006/jmaa.1996.0323
- George A., Veeramani P., 10.1016/0165-0114(94)90162-7, Fuzzy Sets and Systems 64 (1994), 395–399 (1994) Zbl0843.54014MR1289545DOI10.1016/0165-0114(94)90162-7
- Grabic M., 10.1016/0165-0114(88)90064-4, Fuzzy Sets and Systems 27 (1988), 385–389 (1988) MR0956385DOI10.1016/0165-0114(88)90064-4
- Katsaras A. K., Liu D. B., 10.1016/0022-247X(77)90233-5, J. Math. Anal. Appl. 58 (1977), 135–145 (1977) Zbl0358.46011MR0440481DOI10.1016/0022-247X(77)90233-5
- Kramosil I., Michálek J., Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 326–334 (1975) MR0410633
- Menger K., 10.1073/pnas.28.12.535, Proc. Nat. Acad. Sci. U. S. A. 28 (1942), 535–537 (1942) MR0007576DOI10.1073/pnas.28.12.535
- Schweizer B., Sklar A., Statistical metric spaces, Pacific J. Math. 10 (1960), 314–334 (1960) Zbl0096.33203MR0115153
- Srivastava R., Lal S. N., Srivastava A. K., 10.1016/0022-247X(81)90078-0, J. Math. Anal. Appl. 81 (1981), 497–506 (1981) Zbl0491.54004MR0622833DOI10.1016/0022-247X(81)90078-0
- Zadeh L. A., 10.1016/S0019-9958(65)90241-X, Inform. and Control 89 (1965), 338–353 (1965) Zbl0139.24606DOI10.1016/S0019-9958(65)90241-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.