A note on the rate of convergence of local polynomial estimators in regression models

Friedrich Liese; Ingo Steinke

Kybernetika (2001)

  • Volume: 37, Issue: 5, page [585]-603
  • ISSN: 0023-5954

Abstract

top
Local polynomials are used to construct estimators for the value m ( x 0 ) of the regression function m and the values of the derivatives D γ m ( x 0 ) in a general class of nonparametric regression models. The covariables are allowed to be random or non-random. Only asymptotic conditions on the average distribution of the covariables are used as smoothness of the experimental design. This smoothness condition is discussed in detail. The optimal stochastic rate of convergence of the estimators is established. The results cover the special cases of regression models with i.i.d. errors and the case of observations at an equidistant lattice.

How to cite

top

Liese, Friedrich, and Steinke, Ingo. "A note on the rate of convergence of local polynomial estimators in regression models." Kybernetika 37.5 (2001): [585]-603. <http://eudml.org/doc/33553>.

@article{Liese2001,
abstract = {Local polynomials are used to construct estimators for the value $m(x_\{0\})$ of the regression function $m$ and the values of the derivatives $D_\{\gamma \}m(x_\{0\})$ in a general class of nonparametric regression models. The covariables are allowed to be random or non-random. Only asymptotic conditions on the average distribution of the covariables are used as smoothness of the experimental design. This smoothness condition is discussed in detail. The optimal stochastic rate of convergence of the estimators is established. The results cover the special cases of regression models with i.i.d. errors and the case of observations at an equidistant lattice.},
author = {Liese, Friedrich, Steinke, Ingo},
journal = {Kybernetika},
keywords = {nonparametric regression models; smoothness condition; nonparametric regression models; smoothness condition},
language = {eng},
number = {5},
pages = {[585]-603},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A note on the rate of convergence of local polynomial estimators in regression models},
url = {http://eudml.org/doc/33553},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Liese, Friedrich
AU - Steinke, Ingo
TI - A note on the rate of convergence of local polynomial estimators in regression models
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 5
SP - [585]
EP - 603
AB - Local polynomials are used to construct estimators for the value $m(x_{0})$ of the regression function $m$ and the values of the derivatives $D_{\gamma }m(x_{0})$ in a general class of nonparametric regression models. The covariables are allowed to be random or non-random. Only asymptotic conditions on the average distribution of the covariables are used as smoothness of the experimental design. This smoothness condition is discussed in detail. The optimal stochastic rate of convergence of the estimators is established. The results cover the special cases of regression models with i.i.d. errors and the case of observations at an equidistant lattice.
LA - eng
KW - nonparametric regression models; smoothness condition; nonparametric regression models; smoothness condition
UR - http://eudml.org/doc/33553
ER -

References

top
  1. Donoho D. L., Liu R. C., 10.1214/aos/1176348115, Ann. Statist. 19 (1991), 2, 668–701 (1991) Zbl0754.62029MR1105839DOI10.1214/aos/1176348115
  2. Fan J., Design-adaptive nonparametric regression, J. Amer. Statist. Assoc. 87 (1992), 420, 998–1004 (1992) Zbl0850.62354MR1209561
  3. Fan J., 10.1214/aos/1176349022, Ann. Statist. 21 (1993), 196–216 (1993) Zbl0773.62029MR1212173DOI10.1214/aos/1176349022
  4. Fan J., Gasser T., Gijbels I., Brockmann, M., Engel J., 10.1023/A:1003162622169, Ann. Inst. Statist. Math. 49 (1997), 1, 79–99 (1997) Zbl0890.62032MR1450693DOI10.1023/A:1003162622169
  5. Gasser T., Müller H.-G., Estimating regression functions and their derivatives by the kernel method, Scand. J. Statist. 11 (1984), 171–185 (1984) Zbl0548.62028MR0767241
  6. Hall P., 10.2307/1403583, Internat. Statist. Rev. 57 (1989), 1, 45–58 (1989) Zbl0707.62091DOI10.2307/1403583
  7. Cam L. Le, Asymptotic Methods in Statistical Decision Theory, Springer–Verlag, Berlin 1986 Zbl0605.62002MR0856411
  8. Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig 1987 Zbl0656.62004MR0926905
  9. Müller H.-G., Goodness-of-fit diagnostics for regression models, Scand. J. Statist. 19 (1992), 2, 157–172 (1992) Zbl0760.62037MR1173597
  10. Müller W. G., 10.1016/S0378-3758(95)00197-2, J. Statist. Plann. Inference 55 (1996), 3, 389–397 (1996) Zbl0866.62048MR1422141DOI10.1016/S0378-3758(95)00197-2
  11. Nadaraya E. A., On estimating regression, Theory Probab. Appl. 9 (1964), 141–142 (1964) Zbl0136.40902
  12. Park D., 10.1080/00949659908811935, J. Statist. Comput. Simulation 62 (1999), 3, 259–269 (1999) Zbl0918.62035MR1703258DOI10.1080/00949659908811935
  13. Rényi A., On measures of entropy and information, In: Proc. 4th Berkeley Symp., Berkeley 1961, Vol. 1, pp. 547–561 (1961) MR0132570
  14. Ruppert D., Wand P., 10.1214/aos/1176325632, Ann. Statist. 22 (1994), 3, 1346–1370 (1994) Zbl0821.62020MR1311979DOI10.1214/aos/1176325632
  15. Schoenberg I. J., 10.1073/pnas.52.4.947, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 947–950 (1964) Zbl0147.32102MR0167768DOI10.1073/pnas.52.4.947
  16. Stone C. J., 10.1214/aos/1176343886, Ann. Statist. 5 (1977), 595–645 (1977) MR0443204DOI10.1214/aos/1176343886
  17. Stone C. J., 10.1214/aos/1176345206, Ann. Statist. 8 (1980), 6, 1348–1360 (1980) MR0594650DOI10.1214/aos/1176345206
  18. Stone C. J., 10.1214/aos/1176345969, Ann. Statist. 10 (1982), 4, 1040–1053 (1982) Zbl0511.62048MR0673642DOI10.1214/aos/1176345969
  19. Strasser H., Mathematical Theory of Statistics, De Gruyter, Berlin 1985 Zbl0594.62017MR0812467
  20. Wahba G., Spline Models for Observational Data, SIAM, Philadelphia 1990 Zbl0813.62001MR1045442
  21. Watson G. S., Smooth regression analysis, Sankhya, Ser. A 26 (1964), 359–372 (1964) Zbl0137.13002MR0185765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.