Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems
Dibyendu Baksi; Kanti B. Datta; Goshaidas Ray
Kybernetika (2002)
- Volume: 38, Issue: 2, page [209]-216
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBaksi, Dibyendu, Datta, Kanti B., and Ray, Goshaidas. "Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems." Kybernetika 38.2 (2002): [209]-216. <http://eudml.org/doc/33576>.
@article{Baksi2002,
abstract = {A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation $T_\{2\} X = T_\{1\}$ is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.},
author = {Baksi, Dibyendu, Datta, Kanti B., Ray, Goshaidas},
journal = {Kybernetika},
keywords = {pole-zero structure; decentralized stabilizability; expanded system; rational matrix equation; pole-zero structure; decentralized stabilizability; expanded system; rational matrix equation},
language = {eng},
number = {2},
pages = {[209]-216},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems},
url = {http://eudml.org/doc/33576},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Baksi, Dibyendu
AU - Datta, Kanti B.
AU - Ray, Goshaidas
TI - Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 2
SP - [209]
EP - 216
AB - A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation $T_{2} X = T_{1}$ is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.
LA - eng
KW - pole-zero structure; decentralized stabilizability; expanded system; rational matrix equation; pole-zero structure; decentralized stabilizability; expanded system; rational matrix equation
UR - http://eudml.org/doc/33576
ER -
References
top- Davison E. J., Chang T. N., Decentralized controller design using parameter optimization methods, Control Theory and Advanced Technology 2 (1986), 131–154 (1986)
- Emani-Naeini A., Dooren P. Van, 10.1016/0005-1098(82)90070-X, Automatica 18 (1982), 415–430 (1982) MR0667559DOI10.1016/0005-1098(82)90070-X
- Ikeda M., Decentralized control of large scale systems, In: Three Decades of Mathematical System Theory (H. Nijmeijer and J. M Schumacher, eds., Lecture Notes in Control and Information Sciences 135), Springer–Verlag, Berlin – Heidelberg – New York 1989 Zbl0683.93009MR1025792
- Kailath T., Linear Systems, Prentice–Hall, Englewood Cliffs, N.J. 1980 Zbl0870.93013MR0569473
- Siljak D. D., Large-Scale Dynamic Systems: Stability and Structure, North–Holland, New York 1978 Zbl0384.93002MR0595867
- Tan X. L., Ikeda M., 10.1109/9.53543, IEEE Trans. Automat. Control 35 (1990), 644–651 (1990) Zbl0800.93065MR1055494DOI10.1109/9.53543
- Unyelioglu K. A., Ozguler A. B., Decentralized stabilization of multivariable systems using stable proper fractional approach, Communication, Control and Signal Processing (1990), 843–849 (1990)
- Vardulakis A. I. G., Karcanias N., 10.1016/0167-6911(85)90015-5, Systems Control Lett. 5 (1985), 237–242 (1985) Zbl0559.93018MR0784772DOI10.1016/0167-6911(85)90015-5
- Vidyasagar M., Control Systems Synthesis: A Factorization Approach, M.I.T. Press, Cambridge, MA 1985 MR0787045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.