Validation sets in fuzzy logics
Rostislav Horčík; Mirko Navara
Kybernetika (2002)
- Volume: 38, Issue: 3, page [319]-326
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHorčík, Rostislav, and Navara, Mirko. "Validation sets in fuzzy logics." Kybernetika 38.3 (2002): [319]-326. <http://eudml.org/doc/33585>.
@article{Horčík2002,
abstract = {The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may achieve. We summarize characterizations of validation sets of $S$-fuzzy logics and extend them to the case of $R$-fuzzy logics.},
author = {Horčík, Rostislav, Navara, Mirko},
journal = {Kybernetika},
keywords = {validation set; $S$-fuzzy logic; $R$-fuzzy logic; validation set; -fuzzy logic; -fuzzy logic},
language = {eng},
number = {3},
pages = {[319]-326},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Validation sets in fuzzy logics},
url = {http://eudml.org/doc/33585},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Horčík, Rostislav
AU - Navara, Mirko
TI - Validation sets in fuzzy logics
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 3
SP - [319]
EP - 326
AB - The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may achieve. We summarize characterizations of validation sets of $S$-fuzzy logics and extend them to the case of $R$-fuzzy logics.
LA - eng
KW - validation set; $S$-fuzzy logic; $R$-fuzzy logic; validation set; -fuzzy logic; -fuzzy logic
UR - http://eudml.org/doc/33585
ER -
References
top- Butnariu D., Klement E. P., Zafrany S., 10.1016/0165-0114(94)00172-4, Fuzzy Sets and Systems 69 (1995), 241–255 (1995) Zbl0844.03011MR1319229DOI10.1016/0165-0114(94)00172-4
- Chang C. C., 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490 (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
- Cignoli R., D’Ottaviano I. M. L., Mundici D., Algebraic Foundations of Many-valued Reasoning, (Trends in Logic 7.) Kluwer, Dordrecht 1999 Zbl0937.06009MR1786097
- Dubois D., Prade H., 10.1016/0020-0255(85)90027-1, Inform. Sci. 36 (1985), 85–121 (1985) Zbl0582.03040MR0813766DOI10.1016/0020-0255(85)90027-1
- Esteva F., Godo L., Hájek, P., Navara M., 10.1007/s001530050006, Arch. Math. Logic 39 (2000), 103–124 MR1742377DOI10.1007/s001530050006
- Gehrke M., Walker, C., Walker E. A., 10.1002/(SICI)1098-111X(199610)11:10<733::AID-INT2>3.0.CO;2-#, Internat. J. Intelligent Syst. 11 (1996), 733–750 (1996) Zbl0865.04005DOI10.1002/(SICI)1098-111X(199610)11:10<733::AID-INT2>3.0.CO;2-#
- Gödel K., Zum intuitionistischen Aussagenkalkül, Anz. Österreich. Akad. Wiss. Math.–Natur. Kl. 69 (1932), 65–66 (1932)
- Gottwald S., Mehrwertige Logik, Akademie–Verlag, Berlin 1989 Zbl0714.03022MR1117450
- Gottwald S., Fuzzy Sets and Fuzzy Logic, Foundations of Application – from a Mathematical Point of View. Vieweg, Braunschweig – Wiesbaden 1993 Zbl1088.03024MR1218623
- Hájek P., Metamathematics of Fuzzy Logic, (Trends in Logic 4.) Kluwer, Dordrecht 1998 Zbl1007.03022MR1900263
- Hájek P., Godo, L., Esteva F., 10.1007/BF01268618, Arch. Math. Logic 35 (1996), 191–208 (1996) Zbl0848.03005MR1385789DOI10.1007/BF01268618
- Hekrdla J., Klement, E.š P., Navara M., Two approaches to fuzzy propositional logics, Multiple–valued Logic, accepted Zbl1043.03017
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, (Trends in Logic 8.) Kluwer, Dordrecht 2000 Zbl1087.20041MR1790096
- Klement E. P., Navara M., Propositional fuzzy logics based on Frank t-norms: A comparison, In: Fuzzy Sets, Logics and Reasoning about Logics (D. Dubois, E. P. Klement and H. Prade, eds., Applied Logic Series 15), Kluwer, Dordrecht 1999, pp. 17–38 (1999) Zbl0947.03035MR1796598
- Klement E. P., Navara M., A survey on different triangular norm-based fuzzy logics, Fuzzy Sets and Systems 101 (1999), 241–251 (1999) Zbl0945.03032MR1676917
- Ling C. M., Representation of associative functions, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
- Łukasiewicz J., Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls, Comptes Rendus Séances Société des Sciences et Lettres Varsovie cl. III 23 (1930), 51–77 (1930)
- Navara M., Satisfiability in fuzzy logics, Neural Network World 10 (2000), 845–858
- Navara M., Product Logic is Not Compact, Research Report No. CTU–CMP–2001–09, Center for Machine Perception, Czech Technical University, Prague 2001
- Nguyen H. T., Walker E., A First Course in Fuzzy Logic, CRC Press, Boca Raton 1997 Zbl1083.03031MR1404930
- Novák V., On the syntactico-semantical completeness of first-order fuzzy logic, Part I – Syntactical aspects; Part II – Main results. Kybernetika 26 (1990), 47–66, 134–154 (1990)
- Pedrycz W., Fuzzy relational equations with generalized connectives and their applications, Fuzzy Sets and Systems 10 (1983), 185–201 (1983) Zbl0525.04004MR0705207
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, Amsterdam 1983 Zbl0546.60010MR0790314
- Zadeh L. A., 10.1016/S0019-9958(65)90241-X, Inform. and Control 8 (1965), 338–353 (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.