On the stabilizability of some classes of bilinear systems in 3

Hamadi Jerbi

Kybernetika (2002)

  • Volume: 38, Issue: 4, page [457]-468
  • ISSN: 0023-5954

Abstract

top
In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.

How to cite

top

Jerbi, Hamadi. "On the stabilizability of some classes of bilinear systems in $\mathbb {R}^3$." Kybernetika 38.4 (2002): [457]-468. <http://eudml.org/doc/33595>.

@article{Jerbi2002,
abstract = {In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.},
author = {Jerbi, Hamadi},
journal = {Kybernetika},
keywords = {bilinear system; stabilization by feedback; bilinear system; stabilization by feedback},
language = {eng},
number = {4},
pages = {[457]-468},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the stabilizability of some classes of bilinear systems in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/33595},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Jerbi, Hamadi
TI - On the stabilizability of some classes of bilinear systems in $\mathbb {R}^3$
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 4
SP - [457]
EP - 468
AB - In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.
LA - eng
KW - bilinear system; stabilization by feedback; bilinear system; stabilization by feedback
UR - http://eudml.org/doc/33595
ER -

References

top
  1. Andriano V., 10.1016/S0167-6911(97)00074-1, Systems Control Lett. 33 (1998), 259–263 (1998) MR1613086DOI10.1016/S0167-6911(97)00074-1
  2. Cima A., Llibre J., 10.1016/0022-247X(90)90359-N, J. Math. Anal. Appl. 14 (1990), 420–448 (1990) MR1050216DOI10.1016/0022-247X(90)90359-N
  3. Čelikovský S., 10.1016/0167-6911(93)90055-B, Systems Control Lett. 21 (1993), 503–510 (1993) MR1249929DOI10.1016/0167-6911(93)90055-B
  4. Chabour R., Sallet, G., Vivalda J. C., Stabilization of nonlinear two dimensional system: a bilinear approach, Mathematics of Control, Signals and Systems (1996), 224–246 (1996) MR1358071
  5. Chabour O., Vivalda J. C., 10.1016/S0167-6911(00)00045-1, Systems Control Lett. 41 (2000), 141–143 MR1831028DOI10.1016/S0167-6911(00)00045-1
  6. Gauthier J. P., Kupka I., 10.1109/9.182484, IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 (1992) Zbl0778.93102MR1200614DOI10.1109/9.182484
  7. Hahn W., Stability of Motion, Springer Verlag, Berlin 1967 Zbl0189.38503MR0223668
  8. Hammouri H., Marques J. C., 10.1016/0893-9659(94)90047-7, Appl. Math. Lett. 7 (1994), 1, 23–28 (1994) MR1349888DOI10.1016/0893-9659(94)90047-7
  9. Iggider A., Kalitine, B., Outbib R., 10.1007/BF01211748, (Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 (1996) MR1418816DOI10.1007/BF01211748
  10. Iggider A., Kalitine, B., Sallet G., Lyapunov theorem with semidefinite functions proceedings, In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236 (1999) 
  11. Jerbi H., Hammami M. A. C.Vivalda J., On the stabilization of homogeneous affine systems, In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control Automation T2.3.4, 1994, pp. 319–326 (1994) 
  12. Jurdjevic V., Quinn J. P., 10.1016/0022-0396(78)90135-3, J. of Differentials 28 (1978), 381–389 (1978) Zbl0417.93012MR0494275DOI10.1016/0022-0396(78)90135-3
  13. Ryan E. P., Buckingham N. J., On asymptotically stabilizing feedback control of bilinear systems, IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 (1983) Zbl0535.93050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.