On the stabilizability of some classes of bilinear systems in
Kybernetika (2002)
- Volume: 38, Issue: 4, page [457]-468
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJerbi, Hamadi. "On the stabilizability of some classes of bilinear systems in $\mathbb {R}^3$." Kybernetika 38.4 (2002): [457]-468. <http://eudml.org/doc/33595>.
@article{Jerbi2002,
abstract = {In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.},
author = {Jerbi, Hamadi},
journal = {Kybernetika},
keywords = {bilinear system; stabilization by feedback; bilinear system; stabilization by feedback},
language = {eng},
number = {4},
pages = {[457]-468},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the stabilizability of some classes of bilinear systems in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/33595},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Jerbi, Hamadi
TI - On the stabilizability of some classes of bilinear systems in $\mathbb {R}^3$
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 4
SP - [457]
EP - 468
AB - In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.
LA - eng
KW - bilinear system; stabilization by feedback; bilinear system; stabilization by feedback
UR - http://eudml.org/doc/33595
ER -
References
top- Andriano V., 10.1016/S0167-6911(97)00074-1, Systems Control Lett. 33 (1998), 259–263 (1998) MR1613086DOI10.1016/S0167-6911(97)00074-1
- Cima A., Llibre J., 10.1016/0022-247X(90)90359-N, J. Math. Anal. Appl. 14 (1990), 420–448 (1990) MR1050216DOI10.1016/0022-247X(90)90359-N
- Čelikovský S., 10.1016/0167-6911(93)90055-B, Systems Control Lett. 21 (1993), 503–510 (1993) MR1249929DOI10.1016/0167-6911(93)90055-B
- Chabour R., Sallet, G., Vivalda J. C., Stabilization of nonlinear two dimensional system: a bilinear approach, Mathematics of Control, Signals and Systems (1996), 224–246 (1996) MR1358071
- Chabour O., Vivalda J. C., 10.1016/S0167-6911(00)00045-1, Systems Control Lett. 41 (2000), 141–143 MR1831028DOI10.1016/S0167-6911(00)00045-1
- Gauthier J. P., Kupka I., 10.1109/9.182484, IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 (1992) Zbl0778.93102MR1200614DOI10.1109/9.182484
- Hahn W., Stability of Motion, Springer Verlag, Berlin 1967 Zbl0189.38503MR0223668
- Hammouri H., Marques J. C., 10.1016/0893-9659(94)90047-7, Appl. Math. Lett. 7 (1994), 1, 23–28 (1994) MR1349888DOI10.1016/0893-9659(94)90047-7
- Iggider A., Kalitine, B., Outbib R., 10.1007/BF01211748, (Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 (1996) MR1418816DOI10.1007/BF01211748
- Iggider A., Kalitine, B., Sallet G., Lyapunov theorem with semidefinite functions proceedings, In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236 (1999)
- Jerbi H., Hammami M. A. C.Vivalda J., On the stabilization of homogeneous affine systems, In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control Automation T2.3.4, 1994, pp. 319–326 (1994)
- Jurdjevic V., Quinn J. P., 10.1016/0022-0396(78)90135-3, J. of Differentials 28 (1978), 381–389 (1978) Zbl0417.93012MR0494275DOI10.1016/0022-0396(78)90135-3
- Ryan E. P., Buckingham N. J., On asymptotically stabilizing feedback control of bilinear systems, IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 (1983) Zbl0535.93050
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.