# Parametrization and reliable extraction of proper compensators

Ferdinand Kraffer; Petr Zagalak

Kybernetika (2002)

- Volume: 38, Issue: 5, page [521]-540
- ISSN: 0023-5954

## Access Full Article

top## Abstract

top## How to cite

topKraffer, Ferdinand, and Zagalak, Petr. "Parametrization and reliable extraction of proper compensators." Kybernetika 38.5 (2002): [521]-540. <http://eudml.org/doc/33601>.

@article{Kraffer2002,

abstract = {The polynomial matrix equation $X_lD_r$$+$$Y_lN_r$$=$$D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^\{-1\}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^\{-1\}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.},

author = {Kraffer, Ferdinand, Zagalak, Petr},

journal = {Kybernetika},

keywords = {compensator; stabilization; compensator; stabilization},

language = {eng},

number = {5},

pages = {[521]-540},

publisher = {Institute of Information Theory and Automation AS CR},

title = {Parametrization and reliable extraction of proper compensators},

url = {http://eudml.org/doc/33601},

volume = {38},

year = {2002},

}

TY - JOUR

AU - Kraffer, Ferdinand

AU - Zagalak, Petr

TI - Parametrization and reliable extraction of proper compensators

JO - Kybernetika

PY - 2002

PB - Institute of Information Theory and Automation AS CR

VL - 38

IS - 5

SP - [521]

EP - 540

AB - The polynomial matrix equation $X_lD_r$$+$$Y_lN_r$$=$$D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.

LA - eng

KW - compensator; stabilization; compensator; stabilization

UR - http://eudml.org/doc/33601

ER -

## References

top- Callier F. M., Proper feedback compensators for a strictly proper plant by solving polynomial equations, In: Proc. MMAR 2000. Miedzyzdroje 2000, pp. 55–59
- Callier F. M., Polynomial equations giving a proper feedback compensator for a strictly proper plant, In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001
- Callier F. M., Desoer C. A., Multivariable Feedback Systems, Springer, New York 1982
- Forney G. D., 10.1137/0313029, SIAM J. Control 13 (1975), 493–520 (1975) Zbl0269.93011MR0378886DOI10.1137/0313029
- Golub G. H., Loan C. F. Van, Matrix Computations, North Oxford Academic, Oxford 1989
- Kailath T., Linear Systems, Prentice Hall, Englewood Cliffs, N. J. 1980 Zbl0870.93013MR0569473
- Kučera V., Zagalak P., Proper solutions of polynomial equations, In: Proc. IFAC World Congress, Pergamon, Oxford 1999, pp. 357–362 (1999)
- MacDuffee C. C., The Theory of Matrices, Springer, Berlin 1933 Zbl0007.19507
- Popov V. M., 10.1007/BFb0059934, (Lecture Notes in Mathematics 144.) Springer, Berlin 1969, pp. 169–180 (1969) MR0395958DOI10.1007/BFb0059934
- Rosenbrock H. H., State-space and Multivariable Theory, Nelson, London 1970 Zbl0246.93010MR0325201
- Rosenbrock H. H., Hayton G. E., 10.1080/00207177808922416, Internat. J. Control 27 (1978), 837–852 (1978) Zbl0403.93017MR0497005DOI10.1080/00207177808922416
- Dooren P. M. Van, 10.1109/TAC.1981.1102559, IEEE Trans. Automat. Control AC-26 (1981), 111–129 (1981) MR0609253DOI10.1109/TAC.1981.1102559
- Vidyasagar M., Control System Synthesis, MIT Press, Cambridge, MA 1985 Zbl0655.93001MR0787045
- Wang S. H., Davison E. J., 10.1109/TAC.1973.1100283, IEEE Trans. Automat. Control AC-18 (1973), 220–225 (1973) Zbl0261.93010MR0441434DOI10.1109/TAC.1973.1100283
- Wedderburn J., Lectures on Matrices, American Mathematical Society, Providence, R.I. 1934 Zbl0176.30501
- Wolovich W. A., Linear Multivariable Systems, Springer, New York 1974 Zbl0534.93026MR0359881
- Zagalak P., Kučera V., 10.1109/TAC.1985.1103920, IEEE Trans. Automat. Control AC-30 (1985), 286–289 (1985) MR0778436DOI10.1109/TAC.1985.1103920

## Citations in EuDML Documents

top## NotesEmbed ?

topNice post, Thanks for sharing. https://www.blissshine.com/meaning/reliable/

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.