Fixed poles of optimal control by measurement feedback
Jean-François Camart; Basilio del-Muro-Cuéllar; Michel Malabre
Kybernetika (2002)
- Volume: 38, Issue: 5, page [631]-642
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topCamart, Jean-François, del-Muro-Cuéllar, Basilio, and Malabre, Michel. "Fixed poles of $H_2$ optimal control by measurement feedback." Kybernetika 38.5 (2002): [631]-642. <http://eudml.org/doc/33609>.
@article{Camart2002,
abstract = {This paper is concerned with the flexibility in the closed loop pole location when solving the $H_2$ optimal control problem (also called the $H_2$ optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the $H_2$ optimal control problem. These “$H_2$ optimal fixed poles” are characterized in geometric as well as structural terms. A procedure to design $H_2$ optimal controllers which simultaneously freely assign all the remaining poles, is also provided.},
author = {Camart, Jean-François, del-Muro-Cuéllar, Basilio, Malabre, Michel},
journal = {Kybernetika},
keywords = {measurement feedback solution; fixed pole; measurement feedback solution; fixed pole},
language = {eng},
number = {5},
pages = {[631]-642},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fixed poles of $H_2$ optimal control by measurement feedback},
url = {http://eudml.org/doc/33609},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Camart, Jean-François
AU - del-Muro-Cuéllar, Basilio
AU - Malabre, Michel
TI - Fixed poles of $H_2$ optimal control by measurement feedback
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 5
SP - [631]
EP - 642
AB - This paper is concerned with the flexibility in the closed loop pole location when solving the $H_2$ optimal control problem (also called the $H_2$ optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the $H_2$ optimal control problem. These “$H_2$ optimal fixed poles” are characterized in geometric as well as structural terms. A procedure to design $H_2$ optimal controllers which simultaneously freely assign all the remaining poles, is also provided.
LA - eng
KW - measurement feedback solution; fixed pole; measurement feedback solution; fixed pole
UR - http://eudml.org/doc/33609
ER -
References
top- Basile G., Marro G., Controlled and Conditioned Invariants in Linear System Theory, Prentice Hall, Englewood Cliffs, N.J. 1992 Zbl0758.93002MR1149379
- Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM Stud. Appl. Math. 15 (1994) (1994) Zbl0816.93004MR1284712
- Del-Muro-Cuellar B., Malabre M., 10.1016/S0005-1098(00)00157-6, Automatica 37 (2001), 2, 231–238 MR1832029DOI10.1016/S0005-1098(00)00157-6
- Chen B. M., Saberi A., Sannuti, P., Shamash Y., 10.1109/9.250513, IEEE Trans. Automat. Control 38 (1993), 2, 248–261 (1993) MR1206805DOI10.1109/9.250513
- Malabre M., Kučera V., 10.1109/TAC.1984.1103502, IEEE Trans. Automat. Control AC-29 (1984), 3, 266–268 (1984) DOI10.1109/TAC.1984.1103502
- Morse A. S., 10.1137/0309012, SIAM J. Control 9 (1971), 2, 143–148 (1971) Zbl0222.93006MR0290819DOI10.1137/0309012
- Saberi A., Sannuti, P., Chen B. M., Optimal Control, Prentice Hall, Englewood Cliffs, N.J. 1995
- Saberi A., Sannuti, P., Stoorvogel A. A., optimal controllers with measurement feedback for continuous-time systems-flexibility in closed-loop pole placement, Automatica 32 (1996), 8, 1201–1209 (1996) Zbl1035.93503MR1409674
- Schumacher J. M., 10.1109/TAC.1980.1102515, IEEE Trans. Automat. Control AC-25 (1980), 6, 1133–1138 (1980) Zbl0483.93035MR0601495DOI10.1109/TAC.1980.1102515
- Stoorvogel A. A., 10.1016/0005-1098(92)90189-M, Automatica 28 (1992), 3, 627–631 (1992) MR1166033DOI10.1016/0005-1098(92)90189-M
- Stoorvogel A. A., Saberi, A., Chen B. M., 10.1080/00207179308923030, Internat. J. Control 58 (1993), 4, 803–834 (1993) MR1239695DOI10.1080/00207179308923030
- Willems J. C., 10.1109/TAC.1981.1102551, Part I: Almost controlled invariant subspaces. IEEE Trans. Automat. Control AC-26 (1981), 1, 235–252 (1981) Zbl0463.93020MR0609263DOI10.1109/TAC.1981.1102551
- Willems J. C., Commault C., 10.1137/0319029, SIAM J. Control Optim. 19 (1981), 4, 409–504 (1981) Zbl0467.93036MR0618240DOI10.1137/0319029
- Wonham W. M., Linear Multivariable Control: A Geometric Approach, Third edition. Springer Verlag, New York 1985 Zbl0609.93001MR0770574
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.