Rank-one LMI approach to robust stability of polynomial matrices

Didier Henrion; Kenji Sugimoto; Michael Šebek

Kybernetika (2002)

  • Volume: 38, Issue: 5, page [643]-656
  • ISSN: 0023-5954

Abstract

top
Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in μ -analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control. Convex relaxations of the problem yield tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.

How to cite

top

Henrion, Didier, Sugimoto, Kenji, and Šebek, Michael. "Rank-one LMI approach to robust stability of polynomial matrices." Kybernetika 38.5 (2002): [643]-656. <http://eudml.org/doc/33610>.

@article{Henrion2002,
abstract = {Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in $\mu $-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control. Convex relaxations of the problem yield tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.},
author = {Henrion, Didier, Sugimoto, Kenji, Šebek, Michael},
journal = {Kybernetika},
keywords = {linear matrix inequality; stability; linear matrix inequality; stability},
language = {eng},
number = {5},
pages = {[643]-656},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank-one LMI approach to robust stability of polynomial matrices},
url = {http://eudml.org/doc/33610},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Henrion, Didier
AU - Sugimoto, Kenji
AU - Šebek, Michael
TI - Rank-one LMI approach to robust stability of polynomial matrices
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 5
SP - [643]
EP - 656
AB - Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in $\mu $-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control. Convex relaxations of the problem yield tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.
LA - eng
KW - linear matrix inequality; stability; linear matrix inequality; stability
UR - http://eudml.org/doc/33610
ER -

References

top
  1. Apkarian P., Tuan H. D., A sequential SDP/Gauss–Newton algorithm for rank-constrained LMI problems, In: Proc. IEEE Conference on Decision and Control, Phoenix 1999, pp. 2328–2333 (1999) 
  2. Barmish B. R., New Tools for Robustness of Linear Systems, Macmillan, New York 1994 Zbl1094.93517
  3. Bhattacharyya S. P., Chapellat, H., Keel L. H., Robust Control: The Parametric Approach, Prentice Hall, Upper Saddle River, N.J. 1995 Zbl0838.93008
  4. Blondel V. D., Tsitsiklis J. N., 10.1016/S0005-1098(00)00050-9, Automatica 36 (2000), 9, 1249–1274 Zbl0989.93006MR1834719DOI10.1016/S0005-1098(00)00050-9
  5. Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia 1994 Zbl0816.93004MR1284712
  6. Brixius N., Sheng, R., Potra F. A., 10.1080/10556789908805763, Optimization Methods and Software 11/12 (1999), 583–596 (1999) Zbl0973.90525MR1778430DOI10.1080/10556789908805763
  7. Ghaoui L. El, Oustry, F., Rami M. Ait, A cone complementarity linearization algorithm for static output feedback and related problems, IEEE Trans. Automat. Control 42 (1997), 8, 1171–1176 (1997) MR1469081
  8. Ghaoui L. El, Commeau J. L., Lmitool 2, 0 Package: An Interface to Solve LMI Problems. E-Letters on Systems, Control and Signal Processing, Issue 125, January 1999 
  9. Ghaoui L. El, (eds.) S. I. Niculescu, Advances in Linear Matrix Inequality Methods in Control, SIAM Advances in Control and Design, Philadelphia, 1999 Zbl0932.00034MR1736563
  10. Fan M., Tits, A., Doyle J., 10.1109/9.62265, IEEE Trans. Automat. Control 36 (1991), 1, 25–38 (1991) MR1084243DOI10.1109/9.62265
  11. Geromel J. C., Peres P. L. D., Bernussou J., 10.1137/0329021, SIAM J. Control Optim. 29 (1991), 381–402 (1991) Zbl0741.93020MR1092734DOI10.1137/0329021
  12. Gupta S., 10.1002/(SICI)1099-1239(199611)6:9/10<953::AID-RNC261>3.0.CO;2-L, Internat. J. Robust Nonlinear Control 6 (1996), 953–968 (1996) MR1429435DOI10.1002/(SICI)1099-1239(199611)6:9/10<953::AID-RNC261>3.0.CO;2-L
  13. Haddad W. M., Bernstein D. S., Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their applications to robust stability, Part I: Continuous-time theory. Internat. J. Robust Nonlinear Control 3 (1993), 313–339 (1993) 
  14. Henrion D., Tarbouriech, S., Šebek M., 10.1016/S0167-6911(99)00049-3, Systems Control Lett. 38 (1999), 2, 79–89 (1999) Zbl1043.93545MR1751684DOI10.1016/S0167-6911(99)00049-3
  15. Henrion D., Bachelier, O., Šebek M., 𝒟 -stability of polynomial matrices, Internat. J. Control 74 (2001), 8, 845–856 MR1832952
  16. Henrion D., Šebek, M., Bachelier O., Rank-one LMI approach to stability of 2-D polynomial matrices, Multidimensional Systems and Signal Processing 12 (2001), 1, 33–48 Zbl0976.93043MR1818911
  17. Henrion D., Arzelier D., Peaucelle, D., Šebek M., 10.1016/S0005-1098(00)00170-9, Automatica 37 (2001), 3, 461–468 Zbl0982.93057MR1843990DOI10.1016/S0005-1098(00)00170-9
  18. Iwasaki T., Hara S., 10.1109/9.668829, IEEE Trans. Automat. Control 43 (1998), 5, 619–630 (1998) Zbl0927.93038MR1618048DOI10.1109/9.668829
  19. Karl W. C., Verghese G. C., 10.1109/9.231473, IEEE Trans. Automat. Control 38 (1993), 7, 1139–1143 (1993) Zbl0800.93954MR1235240DOI10.1109/9.231473
  20. Kučera V., Discrete Linear Control: The Polynomial Approach, Wiley, Chichester 1979 MR0573447
  21. Packard A., Doyle J., 10.1016/0005-1098(93)90175-S, Automatica 29 (1993), 1, 71–109 (1993) MR1200542DOI10.1016/0005-1098(93)90175-S
  22. Peaucelle D., Arzelier D., New LMI-based conditions for robust 2 performance analysis: In Proc, American Control Conference, Chicago 2000, pp. 317–321 
  23. Polyx, Inc., Polynomial Toolbox for Matlab, Release 2, 0.0, 1999. See the web page www.polyx.cz (1999) 
  24. Scherer C., A full-block 𝒮 -procedure with applications: In: Proc, IEEE Conference on Decision and Control, San Diego 1997, pp. 2602–2607 (1997) 
  25. Scorletti G., Ghaoui L. El, 10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I, J. Robust Nonlinear Control 8 (1998), 845–877 (1998) MR1639959DOI10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I
  26. Shim D., 10.1002/(SICI)1099-1239(199610)6:8<781::AID-RNC189>3.0.CO;2-K, Internat. J. Robust Nonlinear Control 6 (1996), 781–788 (1996) Zbl0864.93084MR1416914DOI10.1002/(SICI)1099-1239(199610)6:8<781::AID-RNC189>3.0.CO;2-K
  27. Vandenberghe L., Boyd S., 10.1137/1038003, SIAM Rev. 38 (1996), 49–95 (1996) Zbl0845.65023MR1379041DOI10.1137/1038003
  28. Willems J. C., 10.1109/9.73561, IEEE Trans. Automat. Control 36 (1991), 259–294 (1991) Zbl0737.93004MR1092818DOI10.1109/9.73561
  29. Zhou K., Doyle, J., Glover K., Robust and Optimal Control, Prentice Hall, Upper Saddle River, N.J. 1996 Zbl0999.49500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.