Rank-one LMI approach to robust stability of polynomial matrices
Didier Henrion; Kenji Sugimoto; Michael Šebek
Kybernetika (2002)
- Volume: 38, Issue: 5, page [643]-656
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHenrion, Didier, Sugimoto, Kenji, and Šebek, Michael. "Rank-one LMI approach to robust stability of polynomial matrices." Kybernetika 38.5 (2002): [643]-656. <http://eudml.org/doc/33610>.
@article{Henrion2002,
abstract = {Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in $\mu $-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control. Convex relaxations of the problem yield tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.},
author = {Henrion, Didier, Sugimoto, Kenji, Šebek, Michael},
journal = {Kybernetika},
keywords = {linear matrix inequality; stability; linear matrix inequality; stability},
language = {eng},
number = {5},
pages = {[643]-656},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank-one LMI approach to robust stability of polynomial matrices},
url = {http://eudml.org/doc/33610},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Henrion, Didier
AU - Sugimoto, Kenji
AU - Šebek, Michael
TI - Rank-one LMI approach to robust stability of polynomial matrices
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 5
SP - [643]
EP - 656
AB - Necessary and sufficient conditions are formulated for checking robust stability of an uncertain polynomial matrix. Various stability regions and uncertainty models are handled in a unified way. The conditions, stemming from a general optimization methodology similar to the one used in $\mu $-analysis, are expressed as a rank-one LMI, a non-convex problem frequently arising in robust control. Convex relaxations of the problem yield tractable sufficient LMI conditions for robust stability of uncertain polynomial matrices.
LA - eng
KW - linear matrix inequality; stability; linear matrix inequality; stability
UR - http://eudml.org/doc/33610
ER -
References
top- Apkarian P., Tuan H. D., A sequential SDP/Gauss–Newton algorithm for rank-constrained LMI problems, In: Proc. IEEE Conference on Decision and Control, Phoenix 1999, pp. 2328–2333 (1999)
- Barmish B. R., New Tools for Robustness of Linear Systems, Macmillan, New York 1994 Zbl1094.93517
- Bhattacharyya S. P., Chapellat, H., Keel L. H., Robust Control: The Parametric Approach, Prentice Hall, Upper Saddle River, N.J. 1995 Zbl0838.93008
- Blondel V. D., Tsitsiklis J. N., 10.1016/S0005-1098(00)00050-9, Automatica 36 (2000), 9, 1249–1274 Zbl0989.93006MR1834719DOI10.1016/S0005-1098(00)00050-9
- Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, Philadelphia 1994 Zbl0816.93004MR1284712
- Brixius N., Sheng, R., Potra F. A., 10.1080/10556789908805763, Optimization Methods and Software 11/12 (1999), 583–596 (1999) Zbl0973.90525MR1778430DOI10.1080/10556789908805763
- Ghaoui L. El, Oustry, F., Rami M. Ait, A cone complementarity linearization algorithm for static output feedback and related problems, IEEE Trans. Automat. Control 42 (1997), 8, 1171–1176 (1997) MR1469081
- Ghaoui L. El, Commeau J. L., Lmitool 2, 0 Package: An Interface to Solve LMI Problems. E-Letters on Systems, Control and Signal Processing, Issue 125, January 1999
- Ghaoui L. El, (eds.) S. I. Niculescu, Advances in Linear Matrix Inequality Methods in Control, SIAM Advances in Control and Design, Philadelphia, 1999 Zbl0932.00034MR1736563
- Fan M., Tits, A., Doyle J., 10.1109/9.62265, IEEE Trans. Automat. Control 36 (1991), 1, 25–38 (1991) MR1084243DOI10.1109/9.62265
- Geromel J. C., Peres P. L. D., Bernussou J., 10.1137/0329021, SIAM J. Control Optim. 29 (1991), 381–402 (1991) Zbl0741.93020MR1092734DOI10.1137/0329021
- Gupta S., 10.1002/(SICI)1099-1239(199611)6:9/10<953::AID-RNC261>3.0.CO;2-L, Internat. J. Robust Nonlinear Control 6 (1996), 953–968 (1996) MR1429435DOI10.1002/(SICI)1099-1239(199611)6:9/10<953::AID-RNC261>3.0.CO;2-L
- Haddad W. M., Bernstein D. S., Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their applications to robust stability, Part I: Continuous-time theory. Internat. J. Robust Nonlinear Control 3 (1993), 313–339 (1993)
- Henrion D., Tarbouriech, S., Šebek M., 10.1016/S0167-6911(99)00049-3, Systems Control Lett. 38 (1999), 2, 79–89 (1999) Zbl1043.93545MR1751684DOI10.1016/S0167-6911(99)00049-3
- Henrion D., Bachelier, O., Šebek M., -stability of polynomial matrices, Internat. J. Control 74 (2001), 8, 845–856 MR1832952
- Henrion D., Šebek, M., Bachelier O., Rank-one LMI approach to stability of 2-D polynomial matrices, Multidimensional Systems and Signal Processing 12 (2001), 1, 33–48 Zbl0976.93043MR1818911
- Henrion D., Arzelier D., Peaucelle, D., Šebek M., 10.1016/S0005-1098(00)00170-9, Automatica 37 (2001), 3, 461–468 Zbl0982.93057MR1843990DOI10.1016/S0005-1098(00)00170-9
- Iwasaki T., Hara S., 10.1109/9.668829, IEEE Trans. Automat. Control 43 (1998), 5, 619–630 (1998) Zbl0927.93038MR1618048DOI10.1109/9.668829
- Karl W. C., Verghese G. C., 10.1109/9.231473, IEEE Trans. Automat. Control 38 (1993), 7, 1139–1143 (1993) Zbl0800.93954MR1235240DOI10.1109/9.231473
- Kučera V., Discrete Linear Control: The Polynomial Approach, Wiley, Chichester 1979 MR0573447
- Packard A., Doyle J., 10.1016/0005-1098(93)90175-S, Automatica 29 (1993), 1, 71–109 (1993) MR1200542DOI10.1016/0005-1098(93)90175-S
- Peaucelle D., Arzelier D., New LMI-based conditions for robust performance analysis: In Proc, American Control Conference, Chicago 2000, pp. 317–321
- Polyx, Inc., Polynomial Toolbox for Matlab, Release 2, 0.0, 1999. See the web page www.polyx.cz (1999)
- Scherer C., A full-block -procedure with applications: In: Proc, IEEE Conference on Decision and Control, San Diego 1997, pp. 2602–2607 (1997)
- Scorletti G., Ghaoui L. El, 10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I, J. Robust Nonlinear Control 8 (1998), 845–877 (1998) MR1639959DOI10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I
- Shim D., 10.1002/(SICI)1099-1239(199610)6:8<781::AID-RNC189>3.0.CO;2-K, Internat. J. Robust Nonlinear Control 6 (1996), 781–788 (1996) Zbl0864.93084MR1416914DOI10.1002/(SICI)1099-1239(199610)6:8<781::AID-RNC189>3.0.CO;2-K
- Vandenberghe L., Boyd S., 10.1137/1038003, SIAM Rev. 38 (1996), 49–95 (1996) Zbl0845.65023MR1379041DOI10.1137/1038003
- Willems J. C., 10.1109/9.73561, IEEE Trans. Automat. Control 36 (1991), 259–294 (1991) Zbl0737.93004MR1092818DOI10.1109/9.73561
- Zhou K., Doyle, J., Glover K., Robust and Optimal Control, Prentice Hall, Upper Saddle River, N.J. 1996 Zbl0999.49500
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.