Artificial neural networks in time series forecasting: a comparative analysis
Héctor Allende; Claudio Moraga; Rodrigo Salas
Kybernetika (2002)
- Volume: 38, Issue: 6, page [685]-707
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Allende H., Galbiati J., Robust test in time series model, J. Interamerican Statist. Inst. 1 (1996), 48. 35–79 (1996) MR1648377
- Allende H., Heiler S., 10.1111/j.1467-9892.1992.tb00091.x, J. Time Ser. Anal. 13 (1992), 1–18 (1992) Zbl0850.62666MR1149267DOI10.1111/j.1467-9892.1992.tb00091.x
- Anderson B., Moore J., Optimal Filtering, Prentice Hall, Englewood Cliffs, N.J. 1979 Zbl1191.93133
- Baxt W. G., 10.1162/neco.1990.2.4.480, Neural Computational 2 (1990), 480–489 (1990) DOI10.1162/neco.1990.2.4.480
- Benitez J. M., Castro J. L., Requena J., 10.1109/72.623216, Neural Networks 8 (1997), 1156–1163 (1997) DOI10.1109/72.623216
- Beran J., Statistics for Long-memory Processes, Chapman and Hall, London 1994 Zbl0869.60045MR1304490
- Bowerman B. L., O’Connell R. T., Forecasting and time series: an applied approach, Third edition. Duxbury Press, 1993 Zbl0779.62087MR0635926
- Box G. E. P., Jenkins G. M., Reinsel G. C., Time Series Analysis, Forecasting and Control, Third edition. Prentice Hall, Englewood Cliffs, N.J. 1994 Zbl1154.62062MR1312604
- Breiman L., Friedman J., Olshen, R., Stone C. J., Classification and Regression Trees, Belmont, C. A. Wadsworth, 1984 Zbl0541.62042MR0726392
- Brockwell P. J., Davis R. A., Time Series Theory and Methods, Springer Verlag, New York 1991 Zbl1169.62074MR1093459
- Brown R. G., Smoothing, Forecasting and Prediction of Discrete Time Series, Prentice Hall, Englewood Cliffs, N.J. 1962 Zbl0192.25606
- Chatfield C., Forecasting in the 1990s, Statistician 4 (1997), 46, 461–473 (1997)
- Cheng B., Titterington D. M., 10.3902/jnns.1.e2, Statist. Sci. 1 (1994), 2–54 (1994) MR1278678DOI10.3902/jnns.1.e2
- Connor J. T., Martin R. D., 10.1109/72.279188, IEEE Trans. Neural Networks 2 (1994), 5, 240–253 (1994) DOI10.1109/72.279188
- Crato N., Ray B. K., 10.1002/(SICI)1099-131X(199603)15:2<107::AID-FOR612>3.0.CO;2-D, Internat. J. Forecasting 15 (1996), 107–125 (1996) DOI10.1002/(SICI)1099-131X(199603)15:2<107::AID-FOR612>3.0.CO;2-D
- Fine T. L., Feedforward Neural Network Methodology, Springer, New York 1999 Zbl0963.68163MR1691898
- Flury B., Riedwyl H., Multivariate Statistics: A Practical Approach, Chapman Hall, London 1990
- Friedman J. H., 10.1214/aos/1176347963, Ann. Statist. 19 (1991), 1–141 (1991) MR1091842DOI10.1214/aos/1176347963
- Funahashi K. I., 10.1016/0893-6080(89)90003-8, Neural Networks 2 (1989), 183–192 (1989) DOI10.1016/0893-6080(89)90003-8
- Han J., Moraga, C., Sinne S., 10.1016/0952-1976(95)00001-1, Engrg. Appl. Artificial Intelligence 2 (1996), 9, 109–119 (1996) DOI10.1016/0952-1976(95)00001-1
- Hornik K., Stinchcombe, M., White H., 10.1016/0893-6080(89)90020-8, Neural Networks 2 (1989), 359–366 (1989) DOI10.1016/0893-6080(89)90020-8
- Hristev R. M., Artificial Neural Networks, Preprint of a book obtained via Internet from the author, 1998
- Hutchinson J. M., A Radial Basis Function Approach to Financial Time Series Analysis, Ph.D. Thesis. Massachusetts Institute of Technology, 1994 MR2716481
- Hwang J. T. G., Ding A. A., Prediction for artificial neural networks, J. Amer. Statist. Assoc. 92 (1997), 438, 748–757 (1997) MR1467864
- Lin J. L., Granger C. W., 10.1002/for.3980130102, Internat. J. Forecasting 13 (1994), 1–9 (1994) DOI10.1002/for.3980130102
- Lippmann R. P., An introduction to computing with neural nets, IEEE ASSP Magazine (1997), 4–22 (1997)
- Ljung G. M., Bax G. E. P., 10.1093/biomet/65.2.297, Biometrika 65 (1978), 297–303 (1978) DOI10.1093/biomet/65.2.297
- McCullagh P., Nelder J. A., Generalized Linear Models, Chapman Hall, London 1989 Zbl0744.62098MR0727836
- Meditch J. S., Stochastic Optimal linear Estimation and Control, MacGraw–Hill, New York 1969 Zbl0269.93061
- Moody J. E., Utans J., Architecture selection strategies for neural networks, In: Refenes A. P. N. Neural Networks in the Capital Markets, Wiley, New York 1995
- Moraga C., Properties of parametric feedforward neural networks, In: XXIII Conferencia Latinoamericana de Informática, Valparaíso 1997, Vol. 2, pp. 861–870 (1997)
- Pineda F. J., Generalization of Backpropagation to recurrent and higher order networks, In: Proc. IEEE Conf. Neural Inform. Proc. Syst., 1987
- Poli R., Cagnoni S., Coppini, G., Walli G., A neural network expert system for diagnosing and treating hypertension, Computer (1991), 64–71 (1991)
- Referes A. P. N., Zapranis A. D., 10.1002/(SICI)1099-131X(199909)18:5<299::AID-FOR725>3.0.CO;2-T, J. Forecasting 18 (1999), 299–322 (1999) DOI10.1002/(SICI)1099-131X(199909)18:5<299::AID-FOR725>3.0.CO;2-T
- Reinsel G. C., Elements of Multivariate Time Series Analysis, Springer Verlag, New York 1993 Zbl1047.62078MR1238940
- Ripley B. D., Statistical aspects of neural networks, In: Networks and Chaos-Statistical and Probabilistic Aspect (O. E. Barndorf–Nielsen, J. L. Jensen, and W. S. Kendall, eds.), Chapman and Hall, London 1993 Zbl0825.68531MR1314652
- Sarle W. S., Neural networks and statistical methods, In: Proc. of the 19th Anual SAS Users Group International Conference, 1994 (19th)
- Smith J., Yadav S., 10.1016/0169-2070(94)90019-1, Internat. J. Forecasting 10 (1994), 507–514 (1994) DOI10.1016/0169-2070(94)90019-1
- Stern H. S., 10.1080/00401706.1996.10484497, Technometrics 38 (1996), 3, 205–214 (1996) Zbl0896.62098MR1411878DOI10.1080/00401706.1996.10484497
- Rao T. Subba, On the theory of bilinear models, J. Roy. Statist. Soc. Ser. B 43 (1981), 244–255 (1981) MR0626772
- Sussmann H. J., 10.1016/S0893-6080(05)80037-1, Neural Networks 5 (1992), 589–593 (1992) DOI10.1016/S0893-6080(05)80037-1
- Temme K. H., Heider, R., Moraga C., Generalized neural networks for fuzzy modeling, In: Proc. Internat. Conference of European Society of Fuzzy Logic and Technology, EUSFLAT’99 Palma de Mallorca 1999
- Tong H., Non-linear Time Series, Oxford University Press, Oxford 1990 Zbl0835.62076
- Vapnik V., The Nature of Statistical Learning Theory, Springer Verlag, Berlin 1995 Zbl0934.62009MR1367965
- Vapnik V., Chervoneski A., The necessary and sufficient conditions for consistency of the method of empirical risk minimization, Pattern Recognition Image Anal. 1 (1991), 284–305 (1991)
- Waibel A., Hanazawa T., Hinton G., Shikano, K., Lang K. J., 10.1109/29.21701, IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 324–329 (1989) DOI10.1109/29.21701
- Wu F. Y., Yen K. K., Application of neural network in regression analysis, In: Proc. 14th Annual Conference on Computers and Industrial Engineering, 1992