Kolmogorov complexity and probability measures
Kybernetika (2002)
- Volume: 38, Issue: 6, page [729]-745
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Calude C., Theories of Computational Complexity, North–Holland, Amsterdam – New York – Oxford – Tokyo 1988 Zbl0633.03034MR0919945
- Chaitin G. J., 10.1145/321356.321363, J. Assoc. Comput. Mach. 13 (1966), 547–569 (1966) Zbl0158.25301MR0210520DOI10.1145/321356.321363
- Fine T. L., Theories of Probability – an Examination of Foundations, Academic Press, New York – London 1973 Zbl0275.60006MR0433529
- Katseff H. P., 10.1016/S0019-9958(78)90062-1, Inform. and Control 38 (1978), 258–263 (1978) MR0509552DOI10.1016/S0019-9958(78)90062-1
- Kolmogorov A. N., Three approaches to the quantitative definition of information, Problems Inform. Transmission 1 (1965), 1, 1–7 (1965) MR0184801
- Kolmogorov A. N., Uspenskiǐ V. A., Algorithms and randomness (in Russian), Teor. Veryatnost. i Primenen. 32 (1987), 3, 425–455 (1987) MR0914935
- Kramosil I., Šindelář J., A note on the law of iterated logarithm from the viewpoint of Kolmogorov program complexity, Problems Control Inform. Theory 16 (1987), 6, 399–409 (1987) MR0930650
- Kramosil I., Šindelář J., On pseudo-random sequences and their relation to a class of stochastical laws, Kybernetika 28 (1992), 6, 383–391 (1992) Zbl0773.60006MR1197721
- Li M., Vitayi P., An Introduction to Kolmogorov Complexity and its Applications, Springer, New York 1997 MR1438307
- Martin–Löf P., 10.1016/S0019-9958(66)80018-9, Inform. and Control 9 (1966), 602–619 (1966) MR0223179DOI10.1016/S0019-9958(66)80018-9
- Martin–Löf P., 10.1007/BF00534110, Z. Wahrsch. Verw. Gebiete 19 (1971), 225–230 (1971) Zbl0212.23103MR0451322DOI10.1007/BF00534110
- Rogers H., Jr., Theory of Recursive Functions and Effective Computability, McGraw–Hill, New York 1967 Zbl0256.02015MR0224462
- Solomonoff R. J., 10.1016/S0019-9958(64)90223-2, Part I. Inform. and Control 7 (1964), 1–22 (1964) Zbl0259.68038MR0172744DOI10.1016/S0019-9958(64)90223-2
- Vovk V. G., The law of of the iterated logarithm for sequences that are random in the sense of Kolmogorov or chaotic (in Russian), Teor. Veroyatnost. i Primenen. 32 (1978), 3, 456–468 (1978) MR0914936