On unequally spaced AR(1) process
Kybernetika (2003)
- Volume: 39, Issue: 1, page [13]-27
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topŠindelář, Jan, and Knížek, Jiří. "On unequally spaced AR(1) process." Kybernetika 39.1 (2003): [13]-27. <http://eudml.org/doc/33619>.
@article{Šindelář2003,
abstract = {Discrete autoregressive process of the first order is considered. The process is observed at unequally spaced time instants. Both least squares estimate and maximum likelihood estimate of the autocorrelation coefficient are analyzed. We show some dangers related with the estimates when the true value of the autocorrelation coefficient is small. Monte-Carlo method is used to illustrate the problems.},
author = {Šindelář, Jan, Knížek, Jiří},
journal = {Kybernetika},
keywords = {AR(1) process; unequally spaced; autocorrelation coefficient; least squares estimate; maximum likelihood estimate; AR(1) process; unequally spaced; autocorrelation coefficient; least squares estimate; maximum likelihood estimate},
language = {eng},
number = {1},
pages = {[13]-27},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On unequally spaced AR(1) process},
url = {http://eudml.org/doc/33619},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Šindelář, Jan
AU - Knížek, Jiří
TI - On unequally spaced AR(1) process
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 1
SP - [13]
EP - 27
AB - Discrete autoregressive process of the first order is considered. The process is observed at unequally spaced time instants. Both least squares estimate and maximum likelihood estimate of the autocorrelation coefficient are analyzed. We show some dangers related with the estimates when the true value of the autocorrelation coefficient is small. Monte-Carlo method is used to illustrate the problems.
LA - eng
KW - AR(1) process; unequally spaced; autocorrelation coefficient; least squares estimate; maximum likelihood estimate; AR(1) process; unequally spaced; autocorrelation coefficient; least squares estimate; maximum likelihood estimate
UR - http://eudml.org/doc/33619
ER -
References
top- Anderson T. W., The Statistical Analysis of Time Series, Wiley, New York 1971 Zbl0835.62074MR0283939
- Baltagi B. H., Wu P. X., 10.1017/S0266466699156020, Econometric Theory 15 (1999), 814–823 (1999) Zbl0963.62110DOI10.1017/S0266466699156020
- Diggle P. J., Liang K. Y., Zeger S. L., Analysis of Longitudinal Data, Oxford University Press, New York 1994 Zbl1031.62002
- Hauser M. A., 10.1016/S0378-3758(98)00252-3, J. Statist. Plann. Inference 80 (1999), 229–255 (1999) Zbl1045.62528MR1713787DOI10.1016/S0378-3758(98)00252-3
- Jones R. H., Longitudinal Data with Serial Correlation: A State-space Approach, Chapman & Hall, New York 1993 Zbl0851.62059MR1293123
- Jones R. H., Boadi-Boateng F., 10.2307/2532504, Biometrics 47 (1991), 161–175 (1991) DOI10.2307/2532504
- Jones R. H., Vecchia A. V., 10.1080/01621459.1993.10476362, J. Amer. Statist. Assoc. 88 (1993), 947–954 (1993) Zbl0800.62535DOI10.1080/01621459.1993.10476362
- Kay S. M., Fundamendals of Statistical Signal Prosessing: Estimation Theory, Prentice Hall, Englewood Cliffs, NJ 1993
- Kazakos D., Papantoni-Kazakos P., Detection and Estimation, Computer Science Press, New York 1990
- Cam L. Le, 10.2307/1403464, Internat. Statist. Rev. 58 (1990), 2, 153–171 (1990) Zbl0715.62045DOI10.2307/1403464
- Mckenzie D. J., 10.1111/1368-423X.00058, Econometrics J. 4 (2001), 1, 89–108 MR1862311DOI10.1111/1368-423X.00058
- Sorenson H. W., Parameter Estimation: Principles and Problems, Marcel Dekker, New York 1980 Zbl0466.62029MR0591459
- Verbeke G., Molenberghs G., Linear Mixed Models for Longitudinal Data, Springer Verlag, New York 2000 Zbl1162.62070MR1880596
- Zimmerman D. L., Núñez-Antón V., 10.1007/BF02595823, Test, Sociedad de Estadística e Investigación Operativa 10 (2001), 1, 1–73 Zbl0981.62050MR1856193DOI10.1007/BF02595823
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.