-equivalences generated by shape function on the real line
Kybernetika (2003)
- Volume: 39, Issue: 3, page [281]-288
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHong, Dug Hun. "$T$-equivalences generated by shape function on the real line." Kybernetika 39.3 (2003): [281]-288. <http://eudml.org/doc/33641>.
@article{Hong2003,
abstract = {This paper is devoted to give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given.},
author = {Hong, Dug Hun},
journal = {Kybernetika},
keywords = {fuzzy number; fuzzy relation; t-norm; T-equivalence; shape function; fuzzy numbers; fuzzy relations; -norm; -equivalence; shape functions},
language = {eng},
number = {3},
pages = {[281]-288},
publisher = {Institute of Information Theory and Automation AS CR},
title = {$T$-equivalences generated by shape function on the real line},
url = {http://eudml.org/doc/33641},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Hong, Dug Hun
TI - $T$-equivalences generated by shape function on the real line
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 3
SP - [281]
EP - 288
AB - This paper is devoted to give a new method of generating T-equivalence using shape function and finding the exact calculation formulas of T-equivalence induced by shape function on the real line. Some illustrative examples are given.
LA - eng
KW - fuzzy number; fuzzy relation; t-norm; T-equivalence; shape function; fuzzy numbers; fuzzy relations; -norm; -equivalence; shape functions
UR - http://eudml.org/doc/33641
ER -
References
top- Baets B. De, Marková A., 10.1016/S0165-0114(97)00141-3, Fuzzy Sets and Systems 91 (1997), 203–213 (1997) MR1480046DOI10.1016/S0165-0114(97)00141-3
- Baets B. De, Mareš, M., Mesiar R., T-partition of the real line generated by impotent shapes, Fuzzy Sets and Systems 91 (1997), 177–184 (1997) MR1480044
- Baets B. De, Mesiar R., Pseudo-metrics and T-equivalence, J. Fuzzy Math. 5 (1997), 471–481 (1997) MR1457163
- Harrison M. A., Introduction to Switching and Automata Theory, McGraw–Hill, New York 1965 Zbl0196.51702MR0186503
- Hong D. H., Hwang S. Y., 10.1016/0165-0114(94)90347-6, Fuzzy Sets and Systems 63 (1994), 175–180 (1994) Zbl0844.04004MR1275891DOI10.1016/0165-0114(94)90347-6
- Hong D. H., Hwang C., 10.1016/S0165-0114(97)00144-9, Fuzzy Sets and Systems 91 (1997), 239–252 (1997) MR1480049DOI10.1016/S0165-0114(97)00144-9
- Hong D. H., Ro P., The law of large numbers for fuzzy numbers with bounded supports, Fuzzy Sets and Systems 116 (2000), 269–274 MR1788398
- Jacas J., Recasens J., Fuzzy numbers and equality relations, In: Proc. 2nd IEEE International Conference on Fuzzy Systems, San Francisco 1993, pp. 1298–1301 (1993)
- Ling C., Representation of associative function, Publ. Math. Debrecen 12 (1965), 189–212 (1965) MR0190575
- Mareš M., Mesiar R., Composition of shape generators, Acta Mathematica et Informatica Universitatis Ostravienses 4 (1996), 37–46 (1996) Zbl0870.04003MR1446782
- Mareš M., Mesiar R., Fuzzy quantities and their aggregation, in aggregation operations, In: New Trends and Applications. Physica–Verlag, Heidelberg 2002, pp. 291–352 MR1936394
- Marková–Stupňanová A., Idempotents of T-addition of fuzzy numbers, Tatra Mt. Math. Publ. 12 (1997), 67–72 (1997) Zbl0954.03059MR1607198
- Mesiar R., 10.1016/0165-0114(95)00178-6, Fuzzy Sets and Systems 87 (1996), 259–261 (1996) MR1388398DOI10.1016/0165-0114(95)00178-6
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, New York 1983 Zbl0546.60010MR0790314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.