The equation and financial mathematics. I
Kybernetika (2003)
- Volume: 39, Issue: 6, page [653]-680
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topŠtěpán, Josef, and Dostál, Petr. "The $dX(t)=Xb(X)dt+X\sigma (X)dW$ equation and financial mathematics. I." Kybernetika 39.6 (2003): [653]-680. <http://eudml.org/doc/33673>.
@article{Štěpán2003,
abstract = {The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C(\{\mathbb \{R\}\}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C(\{\mathbb \{R\}\}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde\{\sigma \}(X(t)).$ A martingale option pricing method is presented.},
author = {Štěpán, Josef, Dostál, Petr},
journal = {Kybernetika},
keywords = {weak solution and uniqueness in law in the SDE-theory; $(b,\sigma )$-stock price; its Girsanov and DDS-reduction; investment process; option pricing; weak solution; uniqueness; SDE-theory; -stock price; investment process; option pricing},
language = {eng},
number = {6},
pages = {[653]-680},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The $dX(t)=Xb(X)dt+X\sigma (X)dW$ equation and financial mathematics. I},
url = {http://eudml.org/doc/33673},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Štěpán, Josef
AU - Dostál, Petr
TI - The $dX(t)=Xb(X)dt+X\sigma (X)dW$ equation and financial mathematics. I
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 6
SP - [653]
EP - 680
AB - The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C({\mathbb {R}}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C({\mathbb {R}}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde{\sigma }(X(t)).$ A martingale option pricing method is presented.
LA - eng
KW - weak solution and uniqueness in law in the SDE-theory; $(b,\sigma )$-stock price; its Girsanov and DDS-reduction; investment process; option pricing; weak solution; uniqueness; SDE-theory; -stock price; investment process; option pricing
UR - http://eudml.org/doc/33673
ER -
References
top- Beckers S., 10.1111/j.1540-6261.1980.tb03490.x, J. Finance 35 (1980), 661–673 (1980) DOI10.1111/j.1540-6261.1980.tb03490.x
- Billingsley P., Convergence of Probability Measures, Wiley, New York – Chichester – Weinheim 1999 Zbl0944.60003MR1700749
- Borovkov K., Novikov A., 10.1239/jap/1037816027, J. Appl. Probab. 39 (2002), 4, 889–895 Zbl1016.60053MR1938179DOI10.1239/jap/1037816027
- Cohn D. C., Measure Theory, Birkhäuser, Boston 1980 Zbl0860.28001MR0578344
- Cox J. C., Notes on option pricing I: Constant elasticity of variance diffusions, Stanford University Preprint, 1975
- Dupačová J., Hurt, J., Štěpán J., Stochastic Modeling in Economics and Finance, Kluwer, Dordrecht 2002 Zbl1094.91051
- Geman H., Madan D. B., Yor M., 10.1007/s780-002-8401-3, Finance and Stochastics 6 (2002), 63–90 Zbl1006.60026MR1885584DOI10.1007/s780-002-8401-3
- Kallenberg O., Foundations of Modern Probability, Springer–Verlag, New York – Berlin – Heidelberg 1997 Zbl0996.60001MR1464694
- Karatzas I., Shreve D. E., Brownian Motion and Stochastic Calculus, Springer–Verlag, New York – Berlin – Heidelberg 1991 Zbl0734.60060MR1121940
- Merton R. C., 10.1016/0022-0531(71)90038-X, J. Econom. Theory 3 (1971), 373–413 (1971) Zbl1011.91502MR0456373DOI10.1016/0022-0531(71)90038-X
- Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer–Verlag, New York – Berlin – Heidelberg 1994 Zbl1087.60040MR1303781
- Rogers L. C. G., Williams D., Diffusions, Markov Processes and Martingales, Volume 1: Foundations. Cambridge University Press, Cambridge 2000 Zbl0977.60005MR1796539
- Rogers L.C.G., Williams D., Diffusions, Markov Processes and Martingales, Volume 2: Itô Calculus. Cambridge University Press, Cambridge 2000 Zbl0977.60005MR1780932
- Scott L. O., 10.2307/2330793, J. Finan. Quant. Anal. 22 (1987), 419–438 (1987) DOI10.2307/2330793
- Scott L. O., Random-variance option pricing: empirical tests of the model and delta-sigma hedging, Adv. in Futures Option Res. 5 (1991), 113–135 (1991)
- Steele J. M., Stochastic Calculus and Financial Applications, Springer–Verlag, New York – Berlin – Heidelberg 2001 Zbl0962.60001MR1783083
- Wiggins J. B., 10.1016/0304-405X(87)90009-2, J. Finan. Econom. 19 (1987), 351–372 (1987) DOI10.1016/0304-405X(87)90009-2
- Yor M., Quelques résultats sur certaines measures extrémales à la representation des martingales, (Lecture Notes in Mathematics 695.) Springer–Verlag, New York – Berlin – Heidelberg 1979
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.