The d X ( t ) = X b ( X ) d t + X σ ( X ) d W equation and financial mathematics. I

Josef Štěpán; Petr Dostál

Kybernetika (2003)

  • Volume: 39, Issue: 6, page [653]-680
  • ISSN: 0023-5954

Abstract

top
The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients b and σ being generally C ( + ) -progressive processes. Any weak solution X is called a ( b , σ ) -stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution μ σ of X in C ( + ) in the special case of a diffusion volatility σ ( X , t ) = σ ˜ ( X ( t ) ) . A martingale option pricing method is presented.

How to cite

top

Štěpán, Josef, and Dostál, Petr. "The $dX(t)=Xb(X)dt+X\sigma (X)dW$ equation and financial mathematics. I." Kybernetika 39.6 (2003): [653]-680. <http://eudml.org/doc/33673>.

@article{Štěpán2003,
abstract = {The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C(\{\mathbb \{R\}\}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C(\{\mathbb \{R\}\}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde\{\sigma \}(X(t)).$ A martingale option pricing method is presented.},
author = {Štěpán, Josef, Dostál, Petr},
journal = {Kybernetika},
keywords = {weak solution and uniqueness in law in the SDE-theory; $(b,\sigma )$-stock price; its Girsanov and DDS-reduction; investment process; option pricing; weak solution; uniqueness; SDE-theory; -stock price; investment process; option pricing},
language = {eng},
number = {6},
pages = {[653]-680},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The $dX(t)=Xb(X)dt+X\sigma (X)dW$ equation and financial mathematics. I},
url = {http://eudml.org/doc/33673},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Štěpán, Josef
AU - Dostál, Petr
TI - The $dX(t)=Xb(X)dt+X\sigma (X)dW$ equation and financial mathematics. I
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 6
SP - [653]
EP - 680
AB - The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C({\mathbb {R}}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C({\mathbb {R}}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde{\sigma }(X(t)).$ A martingale option pricing method is presented.
LA - eng
KW - weak solution and uniqueness in law in the SDE-theory; $(b,\sigma )$-stock price; its Girsanov and DDS-reduction; investment process; option pricing; weak solution; uniqueness; SDE-theory; -stock price; investment process; option pricing
UR - http://eudml.org/doc/33673
ER -

References

top
  1. Beckers S., 10.1111/j.1540-6261.1980.tb03490.x, J. Finance 35 (1980), 661–673 (1980) DOI10.1111/j.1540-6261.1980.tb03490.x
  2. Billingsley P., Convergence of Probability Measures, Wiley, New York – Chichester – Weinheim 1999 Zbl0944.60003MR1700749
  3. Borovkov K., Novikov A., 10.1239/jap/1037816027, J. Appl. Probab. 39 (2002), 4, 889–895 Zbl1016.60053MR1938179DOI10.1239/jap/1037816027
  4. Cohn D. C., Measure Theory, Birkhäuser, Boston 1980 Zbl0860.28001MR0578344
  5. Cox J. C., Notes on option pricing I: Constant elasticity of variance diffusions, Stanford University Preprint, 1975 
  6. Dupačová J., Hurt, J., Štěpán J., Stochastic Modeling in Economics and Finance, Kluwer, Dordrecht 2002 Zbl1094.91051
  7. Geman H., Madan D. B., Yor M., 10.1007/s780-002-8401-3, Finance and Stochastics 6 (2002), 63–90 Zbl1006.60026MR1885584DOI10.1007/s780-002-8401-3
  8. Kallenberg O., Foundations of Modern Probability, Springer–Verlag, New York – Berlin – Heidelberg 1997 Zbl0996.60001MR1464694
  9. Karatzas I., Shreve D. E., Brownian Motion and Stochastic Calculus, Springer–Verlag, New York – Berlin – Heidelberg 1991 Zbl0734.60060MR1121940
  10. Merton R. C., 10.1016/0022-0531(71)90038-X, J. Econom. Theory 3 (1971), 373–413 (1971) Zbl1011.91502MR0456373DOI10.1016/0022-0531(71)90038-X
  11. Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer–Verlag, New York – Berlin – Heidelberg 1994 Zbl1087.60040MR1303781
  12. Rogers L. C. G., Williams D., Diffusions, Markov Processes and Martingales, Volume 1: Foundations. Cambridge University Press, Cambridge 2000 Zbl0977.60005MR1796539
  13. Rogers L.C.G., Williams D., Diffusions, Markov Processes and Martingales, Volume 2: Itô Calculus. Cambridge University Press, Cambridge 2000 Zbl0977.60005MR1780932
  14. Scott L. O., 10.2307/2330793, J. Finan. Quant. Anal. 22 (1987), 419–438 (1987) DOI10.2307/2330793
  15. Scott L. O., Random-variance option pricing: empirical tests of the model and delta-sigma hedging, Adv. in Futures Option Res. 5 (1991), 113–135 (1991) 
  16. Steele J. M., Stochastic Calculus and Financial Applications, Springer–Verlag, New York – Berlin – Heidelberg 2001 Zbl0962.60001MR1783083
  17. Wiggins J. B., 10.1016/0304-405X(87)90009-2, J. Finan. Econom. 19 (1987), 351–372 (1987) DOI10.1016/0304-405X(87)90009-2
  18. Yor M., Quelques résultats sur certaines measures extrémales à la representation des martingales, (Lecture Notes in Mathematics 695.) Springer–Verlag, New York – Berlin – Heidelberg 1979 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.