Rational semimodules over the max-plus semiring and geometric approach to discrete event systems
Stéphane Gaubert; Ricardo Katz
Kybernetika (2004)
- Volume: 40, Issue: 2, page [153]-180
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGaubert, Stéphane, and Katz, Ricardo. "Rational semimodules over the max-plus semiring and geometric approach to discrete event systems." Kybernetika 40.2 (2004): [153]-180. <http://eudml.org/doc/33692>.
@article{Gaubert2004,
abstract = {We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule $\{\mathcal \{S\}\}^n$ over a semiring $\{\mathcal \{S\}\}$ is rational if it has a generating family that is a rational subset of $\{\mathcal \{S\}\}^n$, $\{\mathcal \{S\}\}^n$ being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (sum, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.},
author = {Gaubert, Stéphane, Katz, Ricardo},
journal = {Kybernetika},
keywords = {invariant spaces; reachability; geometric control; rational sets; Presburger arithmetics; max-plus algebra; discrete event systems; invariant space; reachability; geometric control; rational set; Presburger arithmetic; max-plus algebra; discrete event system},
language = {eng},
number = {2},
pages = {[153]-180},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rational semimodules over the max-plus semiring and geometric approach to discrete event systems},
url = {http://eudml.org/doc/33692},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Gaubert, Stéphane
AU - Katz, Ricardo
TI - Rational semimodules over the max-plus semiring and geometric approach to discrete event systems
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 2
SP - [153]
EP - 180
AB - We introduce rational semimodules over semirings whose addition is idempotent, like the max-plus semiring, in order to extend the geometric approach of linear control to discrete event systems. We say that a subsemimodule of the free semimodule ${\mathcal {S}}^n$ over a semiring ${\mathcal {S}}$ is rational if it has a generating family that is a rational subset of ${\mathcal {S}}^n$, ${\mathcal {S}}^n$ being thought of as a monoid under the entrywise product. We show that for various semirings of max-plus type whose elements are integers, rational semimodules are stable under the natural algebraic operations (sum, product, direct and inverse image, intersection, projection, etc). We show that the reachable and observable spaces of max-plus linear dynamical systems are rational, and give various examples.
LA - eng
KW - invariant spaces; reachability; geometric control; rational sets; Presburger arithmetics; max-plus algebra; discrete event systems; invariant space; reachability; geometric control; rational set; Presburger arithmetic; max-plus algebra; discrete event system
UR - http://eudml.org/doc/33692
ER -
References
top- Baccelli F., Cohen G., Olsder, G., Quadrat J., Synchronization and Linearity, Wiley, New York 1992 Zbl0824.93003MR1204266
- Berstel J., Transductions and Context-Free Languages, Teubner, Stuttgart 1979 Zbl0424.68040MR0549481
- Berstel J., Reutenauer C., Rational Series and their Languages, Springer, New York 1988 Zbl0668.68005MR0971022
- Bés A., A survey of arithmetical definability: A tribute to Maurice Boffa, Soc. Math. Belgique 2002, pp. 1–54 MR1900396
- Butkovič P., 10.1016/0166-218X(92)00104-T, Discrete Applied Mathematics 48 (1994), 45–68 (1994) Zbl0804.06017MR1254755DOI10.1016/0166-218X(92)00104-T
- Butkovič P., Cuninghame-Green R., The equation over , Theor. Comp. Sci. 48 (2003), 1, 3–12 MR1957609
- Butkovič P., Hegedüs G., An elimination method for finding all solutions of the system of linear equations over an extremal algebra, Ekonom.-Mat. obzor 20 (1984), 2, 203–215 (1984) Zbl0545.90101MR0782401
- Cochet-Terrasson J., Gaubert, S., Gunawardena J., 10.1080/026811199281967 MR1746112DOI10.1080/026811199281967
- Cohen G., Gaubert, S., Quadrat J., Kernels, images and projections in dioids, In: 3rd Workshop on Discrete Event Systems (WODES’96), IEE Edinburgh, August 1996, pp. 151–158 (1996)
- Cohen G., Gaubert, S., Quadrat J., Linear projectors in the max-plus algebra: In: Proc, IEEE Mediterranean Conference, Cyprus, 1997, CDROM (1997)
- Cohen G., Gaubert, S., Quadrat J., 10.1016/S1367-5788(99)90091-3, Annual Reviews in Control 23 (1999), 207–219 (1999) DOI10.1016/S1367-5788(99)90091-3
- Cohen G., Gaubert, S., Quadrat J., 10.1016/j.laa.2003.08.010, Linear Algebra and Appl. 279 (2004), 395–422. Also e-print arXiv:math.FA/0212294 MR2039751DOI10.1016/j.laa.2003.08.010
- Cohen G., Moller P., Quadrat, J., Viot M., Algebraic tools for the performance evaluation of discrete event systems: IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–5
- Conway J., Regular Algebra and Finite Machines, Chapman and Hall, London 1971 Zbl0231.94041
- Cuninghame-Green R., Minimax Algebra, (Lecture Notes in Economics and Mathematical Systems 166.) Springer, Berlin 1976 Zbl0739.90073MR0580321
- Eilenberg S., Schützenberger M., 10.1016/0021-8693(69)90070-2, Algebra 13 (1969), 1, 173–191 (1969) MR0246985DOI10.1016/0021-8693(69)90070-2
- Gaubert S., Théorie des systèmes linéaires dans les dioïdes, Thèse, École des Mines de Paris, July 1992
- Gaubert S., Rational series over dioids and discrete event systems, In: Proc. 11th Conference on Analysis and Optimization of Systems – Discrete Event Systems. (Lecture Notes in Control and Inform. Sciences 199.) Sophia Antipolis, June 1994. Springer, Berlin 1995 (199.)
- Gaubert S., 10.1109/9.478227, IEEE Trans. Automat. Control 40 (1995), 12, 2014–2025 (1995) Zbl0855.93019MR1364950DOI10.1109/9.478227
- Gaubert S., Exotic semirings: Examples and general results: Support de cours de la 26 École de Printemps d’Informatique Théorique, Noirmoutier, 199
- Gaubert S., Gunawardena J., 10.1016/S0764-4442(97)82710-3, R. Acad. Sci. 326 (1998), 43–48 (1998) MR1649473DOI10.1016/S0764-4442(97)82710-3
- Gaubert S., Katz R., Reachability Problems for Products of Matrices in Semirings, Research Report 4944, INRIA, September 2003. Also e-print arXiv:math.OC/0310028. To appear in Internat. J. Algebra and Comput Zbl1108.20057MR2241626
- Gaubert S., Plus M., Methods and applications of (max,+) linear algebra, In: 14th Symposium on Theoretical Aspects of Computer Science (STACS’97), Lübeck, March 1997 (R. Reischuk and M. Morvan, eds., Lecture Notes in Computer Science 1200), Springer, Berlin 1998, pp. 261–282 (1997) MR1473780
- Ginsburg S., Spanier E. H., 10.2140/pjm.1966.16.285, Pacific J. Math. 16 (1966), 2, 3–12 (1966) Zbl0143.01602MR0191770DOI10.2140/pjm.1966.16.285
- Gunawardena J., ed., Idempotency, (Publications of the Isaac Newton Institute.) Cambridge University Press, Cambridge 1998 Zbl1144.68006MR1608370
- Helbig S., On Caratheodory’s and Kreĭn-Milman’s theorems in fully ordered groups, Comment. Math. Univ. Carolin. 29 (1988), 1, 157–167 (1988) Zbl0652.06010MR0937558
- Katz R., Problemas de alcanzabilidad e invariancia en el álgebra max-plus, Ph.D. Thesis, University of Rosario, November 2003
- Klimann I., Langages, séries et contrôle de trajectoires, Thèse, Université Paris 7, 1999
- Klimann I., 10.1016/S0304-3975(02)00234-7, Comput. Sci. 293 (2003), 1, 115–139 MR1957615DOI10.1016/S0304-3975(02)00234-7
- Kolokoltsov V., Linear additive and homogeneous operators, In: Idempotent Analysis (Advances in Soviet Mathematics 13), Amer. Math. Soc., Providence, RI 1992 Zbl0925.47016MR1203786
- Krob D., 10.1142/S0218196794000063, Internat. J. Algebra and Comput. 4 (1994), 3, 405–425 (1994) Zbl0834.68058MR1297148DOI10.1142/S0218196794000063
- Krob D., 10.1016/0022-4049(94)90090-6, J. Pure and Applied Algebra 93 (1994), 231–249 (1994) Zbl0806.68083MR1275966DOI10.1016/0022-4049(94)90090-6
- Krob D., Rigny A. Bonnier, A complete system of identities for one letter rational expressions with multiplicities in the tropical semiring, J. Pure Appl. Algebra 134 (1994), 27–50 (1994) MR1299364
- Litvinov G., Maslov, V., Shpiz G., 10.1023/A:1010266012029, Math. Notes 69 (2001), 5, 696–729. Also e-print arXiv:math.FA/0009128 MR1846814DOI10.1023/A:1010266012029
- Mairesse J., 10.1109/9.467674, IEEE Trans. Automat. Control 40 (1995), 1783–1789 (1995) Zbl0845.93036MR1354519DOI10.1109/9.467674
- Moller P., Théorie algébrique des Systèmes à Événements Discrets, Thèse, École des Mines de Paris, 1988
- Oppen D. C., 10.1016/0022-0000(78)90021-1, J. Comput. System Sci. 16 (1978), 323–332 (1978) MR0478750DOI10.1016/0022-0000(78)90021-1
- Pin J.-E., Tropical semirings: In: Idempotency (J, Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 50–69 (1998) MR1608374
- Plus M., Max-plus toolbox of scilab: Available from the contrib section of http:--www-rocq, inria.fr/scilab, 1998
- Samborskiĭ S. N., Shpiz G. B., Convex sets in the semimodule of bounded functions: In: Idempotent Analysis, pp, 135–137. Amer. Math. Soc., Providence, RI 1992 MR1203789
- Schrijver A., Theory of Linear and Integer Programming, Wiley, New York 1988 Zbl0970.90052MR0874114
- Simon I., Limited subsets of the free monoid, In: 19th Annual Symposium on Foundations of Computer Science 1978, pp. 143–150 (19th) MR0539835
- Simon I., The nondeterministic complexity of a finite automaton, In: Mots – Mélange offert à M. P. Schutzenberger (M. Lothaire, ed.), Hermes, Paris 1990, pp. 384–400 (1990) MR1252678
- Wagneur E., 10.1016/0012-365X(91)90412-U, 1. dimension theory. Discrete Math. 98 (1991), 57–73 (1991) Zbl0757.06008MR1139597DOI10.1016/0012-365X(91)90412-U
- Walkup E., Borriello G., A general linear max-plus solution technique, In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 406–415 (1998) Zbl0898.68035MR1608375
- Wonham W., Linear Multivariable Control: A Geometric Approach, Third edition. Springer, Berlin 1985 Zbl0609.93001MR0770574
- Zimmermann K., A general separation theorem in extremal algebras, Ekonom.-Mat. obzor 13 (1977), 2, 179–201 (1977) Zbl0365.90127MR0453607
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.