Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ
Christian Grossmann; Diethard Klatte; Bernd Kummer
Kybernetika (2004)
- Volume: 40, Issue: 5, page [571]-584
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGrossmann, Christian, Klatte, Diethard, and Kummer, Bernd. "Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ." Kybernetika 40.5 (2004): [571]-584. <http://eudml.org/doc/33720>.
@article{Grossmann2004,
abstract = {This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.},
author = {Grossmann, Christian, Klatte, Diethard, Kummer, Bernd},
journal = {Kybernetika},
keywords = {log-barrier method; Mangasarian–Fromovitz constraint qualification; convergence ofprimal-dual solutions; locally linearized problems; Lipschitz estimates; log-barrier method; Mangasarian-Fromovitz constraint qualification; convergence of primal-dual solutions; linear independence constraint qualification (LICQ); Mangasarian-Fromovitz constraint qualification (MFCQ)},
language = {eng},
number = {5},
pages = {[571]-584},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ},
url = {http://eudml.org/doc/33720},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Grossmann, Christian
AU - Klatte, Diethard
AU - Kummer, Bernd
TI - Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 5
SP - [571]
EP - 584
AB - This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.
LA - eng
KW - log-barrier method; Mangasarian–Fromovitz constraint qualification; convergence ofprimal-dual solutions; locally linearized problems; Lipschitz estimates; log-barrier method; Mangasarian-Fromovitz constraint qualification; convergence of primal-dual solutions; linear independence constraint qualification (LICQ); Mangasarian-Fromovitz constraint qualification (MFCQ)
UR - http://eudml.org/doc/33720
ER -
References
top- Adler I., Monteiro R. D. C., 10.1007/BF01594923, Math. Programming 50 (1991), 29–51 (1991) Zbl0719.90044MR1098845DOI10.1007/BF01594923
- Bank B., Guddat J., Klatte D., Kummer, B., Tammer K., Non-linear Parametric Optimization, Akademie–Verlag, Berlin 1982 Zbl0502.49002
- El-Bakry A. S., Tapia R. A., Zhang Y., 10.1007/BF00249644, Comput. Optim. Appl. 6 (1996), 157–167 (1996) Zbl0862.90120MR1398265DOI10.1007/BF00249644
- Fiacco A. V., McCormick G. P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York 1968 Zbl0713.90043MR0243831
- Forsgren A., Gill P. E., Wright M. H., 10.1137/S0036144502414942, SIAM Rev. 44 (2002), 525–597 Zbl1028.90060MR1980444DOI10.1137/S0036144502414942
- Grossmann C., Convergence analysis for penalty/barrier path-following in linearly constrained convex programming, Discuss. Math.: Differential Inclusions, Control and Optimization 20 (2000), 7–26 MR1752567
- Grossmann C., Kaplan A. A., Strafmethoden und modifizierte Lagrange Funktionen in der nichtlinearen Optimierung, Teubner, Leipzig 1979 Zbl0425.65035MR0581367
- Grossmann C., Schöniger G., 10.1002/zamm.19770570408, Z. Angew. Math. Mech. 57 (1977), 419–430 (1977) Zbl0406.90066DOI10.1002/zamm.19770570408
- Guddat J., Guerra, F., Nowack D., On the role of the Mangasarian-Fromovitz constraint qualification for penalty-, exact penalty-, and Lagrange multiplier methods, In: Mathematical programming with data perturbations (A. Fiacco, ed.), (Lecture Notes in Pure and Appl. Mathematics 195). Marcel Dekker, Dordrecht 1997, pp. 159–183 (195)) MR1472270
- Güler O., 10.1007/BF01581702, Math. Programming 65A (1994), 347–363 (1994) Zbl0841.90089MR1296390DOI10.1007/BF01581702
- Klatte D., Kummer B., Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications, Kluwer, Dordrecht 2002 Zbl1173.49300MR1909427
- Kummer B., On solvability and regularity of a parametrized version of optimality conditions, Z. Oper. Res.: Math. Meth. Oper. Res. 45 (1995), 215–230 (1995) Zbl0834.90120MR1336630
- Kummer B., 10.1007/BF02614399, Math. Programming, Ser. B 76 (1997), 579–592 (1997) Zbl0871.90086MR1433972DOI10.1007/BF02614399
- Nožička F., Guddat J., Hollatz, H., Bank B., Theorie der linearen parametrischen Optimierung, Akademie–Verlag, Berlin 1974 Zbl0284.90053
- Owen G., Spieltheorie, Springer–Verlag, Berlin 1971 (Translation) (1971) Zbl0222.90048MR0351469
- Ralph D., Wright S. J., 10.1287/moor.25.2.179.12227, Math. Oper. Res. 25 (2000), 179–194 Zbl0977.90082MR1853947DOI10.1287/moor.25.2.179.12227
- Robinson S. M., 10.1007/BFb0120989, Part II: Applications to nonlinear programming. Math. Programming Stud. 19 (1982), 200–221 (1982) Zbl0495.90077MR0669732DOI10.1007/BFb0120989
- Wright S. J., 10.1023/A:1018665102534, Comput. Optim. Appl. 11 (1998), 253–275 (1998) Zbl0917.90279MR1651700DOI10.1023/A:1018665102534
- Wright S. J., 10.1007/PL00011421, Math. Programming 90A (2001), 71–100 Zbl0986.90061MR1819787DOI10.1007/PL00011421
- Wright S. J., 10.1137/S1052623498347438, SIAM J. Optim. 12 (2001), 36–78 Zbl0994.90139MR1870586DOI10.1137/S1052623498347438
- Wright S. J., Orban D., Properties of the Log-barrier Function on Degenerate Nonlinear Programs, Preprint ANL/MCS-P772-0799, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne 1999, revised May 2001 (1999) MR1926660
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.