Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ

Christian Grossmann; Diethard Klatte; Bernd Kummer

Kybernetika (2004)

  • Volume: 40, Issue: 5, page [571]-584
  • ISSN: 0023-5954

Abstract

top
This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.

How to cite

top

Grossmann, Christian, Klatte, Diethard, and Kummer, Bernd. "Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ." Kybernetika 40.5 (2004): [571]-584. <http://eudml.org/doc/33720>.

@article{Grossmann2004,
abstract = {This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.},
author = {Grossmann, Christian, Klatte, Diethard, Kummer, Bernd},
journal = {Kybernetika},
keywords = {log-barrier method; Mangasarian–Fromovitz constraint qualification; convergence ofprimal-dual solutions; locally linearized problems; Lipschitz estimates; log-barrier method; Mangasarian-Fromovitz constraint qualification; convergence of primal-dual solutions; linear independence constraint qualification (LICQ); Mangasarian-Fromovitz constraint qualification (MFCQ)},
language = {eng},
number = {5},
pages = {[571]-584},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ},
url = {http://eudml.org/doc/33720},
volume = {40},
year = {2004},
}

TY - JOUR
AU - Grossmann, Christian
AU - Klatte, Diethard
AU - Kummer, Bernd
TI - Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 5
SP - [571]
EP - 584
AB - This paper characterizes completely the behavior of the logarithmic barrier method under a standard second order condition, strict (multivalued) complementarity and MFCQ at a local minimizer. We present direct proofs, based on certain key estimates and few well–known facts on linear and parametric programming, in order to verify existence and Lipschitzian convergence of local primal-dual solutions without applying additionally technical tools arising from Newton–techniques.
LA - eng
KW - log-barrier method; Mangasarian–Fromovitz constraint qualification; convergence ofprimal-dual solutions; locally linearized problems; Lipschitz estimates; log-barrier method; Mangasarian-Fromovitz constraint qualification; convergence of primal-dual solutions; linear independence constraint qualification (LICQ); Mangasarian-Fromovitz constraint qualification (MFCQ)
UR - http://eudml.org/doc/33720
ER -

References

top
  1. Adler I., Monteiro R. D. C., 10.1007/BF01594923, Math. Programming 50 (1991), 29–51 (1991) Zbl0719.90044MR1098845DOI10.1007/BF01594923
  2. Bank B., Guddat J., Klatte D., Kummer, B., Tammer K., Non-linear Parametric Optimization, Akademie–Verlag, Berlin 1982 Zbl0502.49002
  3. El-Bakry A. S., Tapia R. A., Zhang Y., 10.1007/BF00249644, Comput. Optim. Appl. 6 (1996), 157–167 (1996) Zbl0862.90120MR1398265DOI10.1007/BF00249644
  4. Fiacco A. V., McCormick G. P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York 1968 Zbl0713.90043MR0243831
  5. Forsgren A., Gill P. E., Wright M. H., 10.1137/S0036144502414942, SIAM Rev. 44 (2002), 525–597 Zbl1028.90060MR1980444DOI10.1137/S0036144502414942
  6. Grossmann C., Convergence analysis for penalty/barrier path-following in linearly constrained convex programming, Discuss. Math.: Differential Inclusions, Control and Optimization 20 (2000), 7–26 MR1752567
  7. Grossmann C., Kaplan A. A., Strafmethoden und modifizierte Lagrange Funktionen in der nichtlinearen Optimierung, Teubner, Leipzig 1979 Zbl0425.65035MR0581367
  8. Grossmann C., Schöniger G., 10.1002/zamm.19770570408, Z. Angew. Math. Mech. 57 (1977), 419–430 (1977) Zbl0406.90066DOI10.1002/zamm.19770570408
  9. Guddat J., Guerra, F., Nowack D., On the role of the Mangasarian-Fromovitz constraint qualification for penalty-, exact penalty-, and Lagrange multiplier methods, In: Mathematical programming with data perturbations (A. Fiacco, ed.), (Lecture Notes in Pure and Appl. Mathematics 195). Marcel Dekker, Dordrecht 1997, pp. 159–183 (195)) MR1472270
  10. Güler O., 10.1007/BF01581702, Math. Programming 65A (1994), 347–363 (1994) Zbl0841.90089MR1296390DOI10.1007/BF01581702
  11. Klatte D., Kummer B., Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications, Kluwer, Dordrecht 2002 Zbl1173.49300MR1909427
  12. Kummer B., On solvability and regularity of a parametrized version of optimality conditions, Z. Oper. Res.: Math. Meth. Oper. Res. 45 (1995), 215–230 (1995) Zbl0834.90120MR1336630
  13. Kummer B., 10.1007/BF02614399, Math. Programming, Ser. B 76 (1997), 579–592 (1997) Zbl0871.90086MR1433972DOI10.1007/BF02614399
  14. Nožička F., Guddat J., Hollatz, H., Bank B., Theorie der linearen parametrischen Optimierung, Akademie–Verlag, Berlin 1974 Zbl0284.90053
  15. Owen G., Spieltheorie, Springer–Verlag, Berlin 1971 (Translation) (1971) Zbl0222.90048MR0351469
  16. Ralph D., Wright S. J., 10.1287/moor.25.2.179.12227, Math. Oper. Res. 25 (2000), 179–194 Zbl0977.90082MR1853947DOI10.1287/moor.25.2.179.12227
  17. Robinson S. M., 10.1007/BFb0120989, Part II: Applications to nonlinear programming. Math. Programming Stud. 19 (1982), 200–221 (1982) Zbl0495.90077MR0669732DOI10.1007/BFb0120989
  18. Wright S. J., 10.1023/A:1018665102534, Comput. Optim. Appl. 11 (1998), 253–275 (1998) Zbl0917.90279MR1651700DOI10.1023/A:1018665102534
  19. Wright S. J., 10.1007/PL00011421, Math. Programming 90A (2001), 71–100 Zbl0986.90061MR1819787DOI10.1007/PL00011421
  20. Wright S. J., 10.1137/S1052623498347438, SIAM J. Optim. 12 (2001), 36–78 Zbl0994.90139MR1870586DOI10.1137/S1052623498347438
  21. Wright S. J., Orban D., Properties of the Log-barrier Function on Degenerate Nonlinear Programs, Preprint ANL/MCS-P772-0799, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne 1999, revised May 2001 (1999) MR1926660

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.